The Resource Amino acids in human nutrition and health, edited by J.P.F. D'Mello

Amino acids in human nutrition and health, edited by J.P.F. D'Mello

Label
Amino acids in human nutrition and health
Title
Amino acids in human nutrition and health
Statement of responsibility
edited by J.P.F. D'Mello
Contributor
Subject
Language
eng
Cataloging source
DNLM/DLC
Dewey number
612/.015756
Illustrations
illustrations
Index
index present
LC call number
QP561
LC item number
.A4845 2012
Literary form
non fiction
Nature of contents
bibliography
NLM call number
QU 60
http://library.link/vocab/relatedWorkOrContributorName
  • D'Mello, J. P. Felix
  • C.A.B. International
http://library.link/vocab/subjectName
  • Amino acids in human nutrition
  • Amino acids
  • Amino Acids
  • Amino Acids
  • Enzymes
  • Enzymes
  • Nutritional Physiological Phenomena
Label
Amino acids in human nutrition and health, edited by J.P.F. D'Mello
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • 1.2.
  • 3.5.1.2.
  • Wound healing
  • 3.5.1.3.
  • Neuroprotection/regeneration
  • 3.5.2.
  • Arginase in disease
  • 3.5.2.1.
  • Diabetes
  • 3.5.2.2.
  • Hypertension
  • Introduction
  • 3.5.2.3.
  • Sickle cell disease
  • 3.5.2.4.
  • Erectile dysfunction
  • 3.5.2.5.
  • Asthma
  • 3.5.2.6.
  • Ischaemia/reperfusion injury
  • 3.5.2.7.
  • Atherosclerosis
  • 1.3.
  • 3.5.2.8.
  • Nephropathy
  • 3.5.2.9.
  • Cancer
  • 3.5.2.10.
  • Parasitic infection
  • 3.5.2.11.
  • Hyperargininaemia
  • 3.5.2.12.
  • Ageing
  • GDH in Animals
  • 3.5.2.13.
  • Retinopathy
  • 3.6.
  • Regulation of Activity
  • 3.6.1.
  • Humoral factors
  • 3.6.1.1.
  • Reactive oxygen species
  • 3.6.1.2.
  • Angiotensin II
  • 1.3.1.
  • 3.6.2.
  • Elevation of arginase activity and signal transduction mechanisms
  • 3.7.
  • Arginase Inhibitors
  • 3.8.
  • Conclusions
  • 4.
  • Bypassing the Endothelial L-Arginine-Nitric Oxide Pathway: Effects of Dietary Nitrite and Nitrate on Cardiovascular Function
  • T. Rassaf
  • 4.1.
  • Structure of animal GDH
  • Abstract
  • 4.2.
  • Introduction
  • 4.3.
  • L-Arginine: A Semi-Essential Amino Acid in Human Physiology
  • 4.4.
  • L-Arginine is the Substrate of the Nitric Oxide Synthases: The L-Arginine-Nitric Oxide Pathway
  • 4.5.
  • L-Arginine in Cardiovascular Disease: Perspectives and Limitations
  • 4.6.
  • 1.4.
  • Nitric Oxide Generation without NO-Synthase? Bypassing the L-Arginine Pathway
  • 4.7.
  • Nitrate-Nitrite-Nitric Oxide Pathway
  • 4.8.
  • Effects of Nitrite and Nitrate in Human Physiology
  • 4.9.
  • Dietary Nitrate and Nitrite
  • 4.10.
  • Conclusions
  • 4.11.
  • Active Site
  • Acknowledgements
  • 5.
  • Histidine Decarboxylase
  • A. Zlomuzica
  • 5.1.
  • Abstract
  • 5.2.
  • Introduction
  • 5.3.
  • Histidine Decarboxylase Enzyme
  • 1.4.1.
  • 5.4.
  • Histidine Decarboxylase Gene
  • 5.4.1.
  • Gene polymorphism
  • 5.5.
  • Pharmacological Inhibition
  • 5.6.
  • Mrna Antisense And Gene Knockout
  • 5.7.
  • Neurophysiology and Behaviour
  • GDH dynamics
  • 5.7.1.
  • Brain neurotransmitters
  • 5.7.2.
  • Nutrition
  • 5.7.3.
  • Sleep, waking and arousal
  • 5.7.4.
  • Reward and drugs
  • 5.7.5.
  • Stress, fear and anxiety
  • Machine generated contents note:
  • 1.4.2.
  • 5.7.6.
  • Learning and memory
  • 5.7.6.1.
  • Dementia
  • 5.8.
  • Summary and Conclusions
  • 5.9.
  • Acknowledgements
  • 6.
  • Glutamate Decarboxylase
  • GTP inhibition site
  • Y. Nakamura
  • 6.1.
  • Abstract
  • 6.2.
  • Introduction
  • 6.3.
  • Distribution of GABA
  • 6.3.1.
  • GABA storage, release and uptake
  • 6.3.2.
  • 1.4.3.
  • GABA receptors
  • 6.3.3.
  • Metabolism of GABA
  • 6.3.4.
  • Decarboxylation reaction by GAD
  • 6.3.5.
  • Distribution and characterization of GAD
  • 6.3.6.
  • Purification of GAD protein
  • 6.3.7.
  • ADP/second NADH site paradox
  • Gene structure of GAD
  • 6.4.
  • GAD 65 in Blood Leucocytes
  • 6.5.
  • Taste Signalling
  • 6.6.
  • Suggestions for Future Research
  • 6.7.
  • Conclusions
  • 6.8.
  • 1.5.
  • Acknowledgements
  • 7.
  • Glutaminase
  • J. Marquez
  • 7.1.
  • Abstract
  • 7.2.
  • Introduction
  • 7.3.
  • Mammalian Glutaminase Genes and Transcripts
  • Role of GDH in Insulin Homeostasis
  • 7.3.1.
  • Gls gene and transcripts
  • 7.3.2.
  • Gls2 gene and transcripts
  • 7.4.
  • Mammalian Glutaminase Enzymes
  • 7.4.1.
  • Molecular structures and kinetic properties
  • 7.4.2.
  • Subcellular locations
  • 1.5.1.
  • 7.5.
  • Glutaminase Expression in Mammalian Brain
  • 7.5.1.
  • Expression of glutaminase L in astrocytes
  • 7.6.
  • State of Art and Perspectives
  • 7.7.
  • Conclusions
  • 7.8.
  • Acknowledgements
  • HHS
  • 8.
  • D-Serine and Serine Racemase in the Retina
  • V. Ganapathy
  • 8.1.
  • Abstract
  • 8.2.
  • Introduction
  • 8.3.
  • NMDA Receptor and D-serine as a Co-agonist
  • 8.4.
  • 1.5.2.
  • D-Serine in the Retina
  • 8.5.
  • Mechanisms of D-Serine Uptake in the Retina
  • 8.6.
  • D-Serine and Serine Racemase in Retinal Neurons
  • 8.7.
  • Role of D-Serine in the Retina
  • 8.8.
  • Role of D-Serine and Serine Racemase in Neuronal Cell Death
  • 8.9.
  • SIRT4 mutations
  • Conclusions
  • 8.10.
  • Acknowledgements
  • 9.
  • Tryptophan Hydroxylase
  • J. Haavik
  • 9.1.
  • Abstract
  • 9.2.
  • Introduction
  • pt. I
  • 1.5.3.
  • 9.3.
  • General Properties
  • 9.4.
  • Structure and Function of TPH
  • 9.4.1.
  • Domain organization
  • 9.4.2.
  • Ligand binding
  • 9.4.3.
  • Catalytic mechanism
  • SCHAD mutations
  • 9.5.
  • Enzyme Regulation
  • 9.5.1.
  • Inhibition of TPH
  • 9.5.2.
  • Regulation of TPH
  • 9.5.3.
  • Phosphorylation of TPH
  • 9.5.4.
  • 14-3-3 binding to TPH
  • 1.6.
  • 9.6.
  • TPH Knockout Studies
  • 9.7.
  • Implications of TPH Dysfunction in Human Health
  • 9.8.
  • Concluding Remarks and Future Research
  • 10.
  • Methionine Metabolism
  • S.C. Lu
  • 10.1.
  • Evolution of GDH Allostery
  • Abstract
  • 10.2.
  • Introduction
  • 10.3.
  • Proliferating Hepatocytes and Liver Cancer Cells Show a Less Efficient Methionine Metabolism than Normal Differentiated Hepatocytes
  • 10.4.
  • How Does a Less Efficient Methionine Metabolism Facilitate Hepatocyte Proliferation?
  • 10.5.
  • Regulation of Methionine Metabolism is a Crucial Step in Liver Regeneration
  • 10.6.
  • 1.6.1.
  • How do Both a Defect and an Excess of Liver SAMe Trigger HCC?
  • 10.7.
  • Does Changing the Metabolism of Hepatocytes through Manipulation of Methionine Metabolism Hold Promise for Improving HCC Prognosis?
  • 10.8.
  • Conclusions
  • 10.9.
  • Financial Support
  • pt. II
  • DYNAMICS
  • 11.
  • Possible therapeutics for GDH-mediated insulin disorders
  • Amino Acid Transport Across Each Side of the Blood-Brain Barrier
  • I.A. Simpson
  • 11.1.
  • Abstract
  • 11.2.
  • Introduction
  • 11.3.
  • New Approach to Studying the BBB
  • 11.4.
  • Facilitative Amino Acid Transporters of the BBB
  • 1.6.2.
  • 11.4.1.
  • Facilitative transport of large essential neutral amino acids: system L1
  • 11.4.2.
  • Facilitative transport of cationic amino acids: system y+
  • 11.4.3.
  • Facilitative transport of glutamine: system n
  • 11.4.4.
  • Facilitative transport of acidic amino acids: system xG-
  • 11.5.
  • Amino Acid Gradients between Brain and Plasma
  • Other novel inhibitors of GDH
  • 11.6.
  • Na+-dependent Transport Systems of the BBB
  • 11.6.1.
  • Na+-dependent transport of large neutral amino acids: system Na+-LNAA
  • 11.6.2.
  • Na+-dependent transport of small non-essential neutral amino acids: system A
  • 11.6.3.
  • Na+-dependent transport of some large and small neutral amino acids: system ASC
  • 11.6.4.
  • Na+-dependent transport of nitrogen-rich amino acids: system N
  • 1.7.
  • 11.6.5.
  • Na+-dependent transport of acidic amino acids: the EAAT family
  • 11.7.
  • Organization of the Various Transport Systems
  • 11.8.
  • Branched-chain Amino Acids and Brain Function
  • 11.9.
  • Glutamate in Plasma and Brain
  • 11.9.1.
  • Compartmentation of glutamate
  • Conclusions
  • 11.9.2.
  • Excitotoxicity hypothesis of neuronal death
  • 11.9.3.
  • Glutamate in circulation
  • 11.10.
  • Facilitative and Active Transport Systems for Glutamate in the BBB
  • 11.10.1.
  • Facilitative transport of glutamate in the luminal membrane
  • 11.10.2.
  • Active transport systems expel glutamate from the ECF
  • ENZYMES AND METABOLISM
  • 1.8.
  • 11.10.3.
  • Current concept of glutamate transport across the BBB
  • 11.11.
  • Glutamine and Ammonia Balance
  • 11.11.1.
  • Facilitative transport of glutamine at the luminal membrane
  • 11.11.2.
  • Na+-dependent transport of glutamine at the abluminal membrane
  • 11.11.3.
  • Ammonia balance
  • Acknowledgements
  • 11.12.
  • γ-Glutamyl Cycle and the Role of Pyroglutamate on Na+-dependent Carriers
  • 11.13.
  • Concluding Comments
  • 11.14.
  • Acknowledgements
  • 12.
  • Inter-organ Fluxes of Amino Acids
  • C.H.C. Dejong
  • 12.1.
  • 2.
  • Abstract
  • 12.2.
  • Introduction
  • 12.3.
  • Glutamine and Ammonia
  • 12.3.1.
  • Metabolism
  • 12.3.2.
  • Pathophysiology
  • 12.3.2.1.
  • Aminotransferases
  • Critical illness and trauma
  • 12.3.2.2.
  • Hyperammonaemia
  • 12.4.
  • Glutamine, Citrulline and Arginine
  • 12.4.1.
  • Physiology
  • 12.4.1.1.
  • Glutamine and citrulline
  • 12.4.1.2.
  • M.E. Conway
  • Citrulline and arginine
  • 12.4.2.
  • Metabolism after enteral administration
  • 12.4.2.1.
  • Glutamine
  • 12.4.2.2.
  • Arginine
  • 12.4.2.3.
  • Citrulline
  • 12.5.
  • 2.1.
  • Recommendations for Future Research
  • 12.6.
  • Conclusions
  • 13.
  • Cellular Adaptation to Amino Acid Availability: Mechanisms Involved in the Regulation of Gene Expression
  • P. Fafournoux
  • 13.1.
  • Abstract
  • 13.2.
  • Introduction
  • Abstract
  • 13.3.
  • Regulation of Amino Acid Metabolism and Homeostasis in the Whole Animal
  • 13.3.1.
  • Free amino acid pool --
  • 2.2.
  • Introduction
  • 2.2.1.
  • 1.
  • Transamination
  • 2.2.2.
  • Cellular distribution of aminotransferases
  • 2.2.2.1.
  • Cellular distribution of the BCAT proteins
  • 2.2.2.2.
  • Cellular distribution of the ALT proteins
  • 2.2.2.3.
  • Cellular distribution of the AST proteins
  • 2.3.
  • Glutamate Dehydrogenase
  • Role of Aminotransferases in Brain Metabolism
  • 2.3.1.
  • role of BCAT in brain metabolism
  • 2.4.
  • Alanine Aminotransferases and Glutamate
  • 2.5.
  • Aspartate Aminotransferases and their Role in the Malate-Aspartate Shuttle and Glutamate Metabolism
  • 2.6.
  • Pathological Conditions Resulting from Impaired Aminotransferase Metabolism
  • 2.6.1.
  • C.A. Stanley
  • Maple syrup urine disease
  • 2.6.2.
  • Glutamate toxicity and neurodegeneration
  • 2.6.3.
  • Redox sensitivity of BCAT
  • 2.7.
  • Aminotransferase Proteins as Biomarkers of Disease
  • 2.7.1.
  • Mild elevation of ALT and AST
  • 2.7.2.
  • 1.1.
  • Moderate/marked elevation of ALT and AST
  • 2.8.
  • Conclusions and Future Directions
  • 3.
  • Arginase
  • R.B. Caldwell
  • 3.1.
  • Abstract
  • 3.2.
  • Introduction
  • Abstract
  • 3.3.
  • Isoforms and Distribution
  • 3.4.
  • Structure and Location of Arginase
  • 3.5.
  • Involvement of Arginase in Health and Disease
  • 3.5.1.
  • Arginase in health
  • 3.5.1.1.
  • Ammonia detoxification
  • Molecular Mechanisms Involved in the Regulation of Gene Expression by Amino Acid Limitation
  • Amino Acid Requirements: Quantitative Estimates
  • A.V. Kurpad
  • 16.1.
  • Abstract
  • 16.2.
  • Introduction
  • 16.3.
  • Nitrogen Balance
  • 16.4.
  • Isotopic Tracer Methods
  • 13.4.1.
  • 16.4.1.
  • Direct amino acid oxidation and balance
  • 16.4.2.
  • Indicator amino acid oxidation and balance
  • 16.4.3.
  • Post-prandial protein utilization
  • 16.5.
  • Factorial Prediction of Amino Acid Requirements
  • 16.6.
  • Estimates of the Amino Acid Requirement in Potentially Adapted States
  • Transcriptional activation of mammalian genes by amino acid starvation
  • 16.7.
  • Conclusions
  • 17.
  • Amino Acid Supplements and Muscular Performance
  • S.M. Phillips
  • 17.1.
  • Abstract
  • 17.2.
  • Introduction
  • 17.3.
  • 13.4.1.1.
  • Amino Acids and Protein Turnover
  • 17.4.
  • Muscle Protein Synthesis
  • 17.5.
  • Enhancing Adaptations to Resistance Exercise with Amino Acid and Protein Supplements
  • 17.5.1.
  • Acute studies
  • 17.5.2.
  • Chronic studies
  • 17.5.3.
  • Regulation of the human CHOP gene by amino acid starvation
  • Dose and distribution considerations to maximize MPS
  • 17.6.
  • Enhancing Endurance Exercise Performance and Recovery with Amino Acid and Protein Supplements
  • 17.6.1.
  • Amino acids and recovery from endurance exercise
  • 17.6.2.
  • Role of protein and amino acids in endurance exercise performance
  • 17.7.
  • Cell Signalling Responses to Amino Acids and Resistance Exercise
  • 17.7.1.
  • 13.4.1.2.
  • Cell signalling pathways involved in translation initiation and elongation
  • 17.7.2.
  • Cell signalling response to amino acids
  • 17.7.3.
  • Cell signalling response to amino acids and exercise
  • 17.8.
  • Timing Considerations
  • 17.8.1.
  • Nutrient timing and acute exercise
  • 17.8.2.
  • Regulation of the asparagine synthetase gene by amino acid starvation
  • Nutrient timing and chronic exercise
  • 17.9.
  • Amino Acid Source
  • 17.9.1.
  • Acute studies
  • 17.9.2.
  • Chronic studies
  • 17.10.
  • Role of Leucine and Amino Acid Supplements in the Sarcopenia of Ageing
  • 17.11.
  • 13.4.1.3.
  • Conclusions and Future Directions
  • 18.
  • Amino Acids in Clinical and Nutritional Support: Glutamine in Duchenne Muscular Dystrophy
  • R. Hankard
  • 18.1.
  • Abstract
  • 18.2.
  • Introduction
  • 18.3.
  • Duchenne Muscular Dystrophy: the Role of Muscle in Glutamine Metabolism
  • Transcription factors binding the AARE
  • 18.4.
  • Glutamine Supplementation in Children with Duchenne Muscular Dystrophy
  • 18.4.1.
  • Acute glutamine on protein metabolism
  • 18.4.2.
  • Long-term glutamine on clinical outcomes
  • 18.5.
  • Conclusions and Future Research
  • 19.
  • Adverse Effects
  • 13.4.1.3.1.
  • J.P.F. D'Mello
  • 19.1.
  • Abstract
  • 19.2.
  • Introduction
  • 19.3.
  • Classification
  • 19.4.
  • Amino Acid Imbalance
  • 19.4.1.
  • Contents note continued:
  • ATF4
  • Concept
  • 19.4.2.
  • Dietary or nutritional amino acid imbalance
  • 19.4.2.1.
  • Anorexia
  • 19.4.2.2.
  • Dietary preferences
  • 19.4.2.3.
  • Mechanisms
  • 19.4.2.4.
  • 13.4.1.3.2.
  • Effects on nutrient utilization
  • 19.5.
  • Clinical Amino Acid Imbalance
  • 19.5.1.
  • Septic encephalopathy
  • 19.5.2.
  • Liver disorders
  • 19.5.3.
  • Cancer and other conditions
  • 19.5.4.
  • ATF2
  • Appetite
  • 19.6.
  • Amino Acid Antagonisms
  • 19.6.1.
  • Branched-chain amino acid antagonisms
  • 19.6.1.1.
  • Leucine and pellagra
  • 19.6.2.
  • lysine-arginine antagonism
  • 19.6.2.1.
  • 13.4.1.3.3.
  • Hyperlysinaemia
  • 19.6.3.
  • Antagonisms induced by non-protein amino acids
  • 19.6.3.1.
  • Analogues of arginine
  • 19.6.3.1.1.
  • Canavanine
  • 19.6.3.1.2.
  • Homoarginine
  • 19.6.3.1.3.
  • Role of ATF4 and ATF2 in the control of the AARE-dependent transcription
  • Indospicine
  • 19.6.3.2.
  • Analogues of sulphur-containing amino acids
  • 19.6.3.2.1.
  • Selenoamino acids
  • 19.6.3.2.2.
  • S-Methylcysteine sulphoxide
  • 19.6.3.3.
  • Mimosine
  • 19.6.3.4.
  • 13.4.2.
  • Neurotoxic amino acids
  • 19.6.3.4.1.
  • β-N-Oxalylamino-L-alanine
  • 19.6.3.4.2.
  • β-Cyanoalanine
  • 19.6.3.4.3.
  • αγ-Diaminobutyric acid
  • 19.6.3.4.4.
  • β-N-Methylamino-L-alanine
  • 19.6.3.5.
  • Signalling pathways regulated by amino acid limitation
  • Hypoglycin A
  • 19.6.3.6.
  • Mechanisms
  • 19.6.3.6.1.
  • Arginine analogues
  • 19.6.3.6.2.
  • Analogues of the sulphur-containing amino acids
  • 19.6.3.6.3.
  • Mimosine
  • 19.6.3.6.4.
  • 13.4.2.1.
  • Neurotoxic amino acids
  • 19.6.3.6.5.
  • Hypoglycin A
  • 19.6.3.6.6.
  • Underlying themes
  • 19.7.
  • Amino Acid Toxicity
  • 19.7.1.
  • Glutamate
  • 19.7.2.
  • GCN2/ATF4 pathway (the AAR pathway)
  • Homocysteine
  • 19.7.3.
  • Modified lysine residues
  • 19.7.4.
  • Phenylalanine
  • 19.8.
  • Potential Applications
  • 19.8.1.
  • Neuropsychological investigations
  • 19.8.2.
  • 13.4.2.2.
  • Therapeutic aspects
  • 19.9.
  • Conclusions
  • 20.
  • Umami Taste of Glutamate
  • X. Li
  • 20.1.
  • Abstract
  • 20.2.
  • Introduction
  • 13.3.2.
  • Signalling pathway leading to ATF2 phosphorylation
  • 20.3.
  • Taste Sensory System
  • 20.4.
  • T1R Family of Taste Receptor
  • 20.5.
  • Functional Expression of T1R
  • 20.6.
  • T1R Knockout Mice
  • 20.7.
  • Molecular Mechanism of Umami Synergy
  • 13.4.2.3.
  • 20.8.
  • Umami Signal Transduction
  • 20.9.
  • Functional Neuroimaging of Umami Taste
  • 20.10.
  • Conclusions
  • pt. IV
  • HEALTH
  • 21.
  • Homocysteine Status: Factors Affecting and Health Risks
  • Other signalling pathways
  • B. Steffen
  • 21.1.
  • Abstract
  • 21.2.
  • Introduction and Objectives
  • 21.3.
  • Metabolism of Homocysteine
  • 21.4.
  • Distribution of Homocysteine Concentrations in the US Population
  • 21.5.
  • 13.5.
  • Determinants of Serum Total Homocysteine Concentrations
  • 21.5.1.
  • Demographic characteristics
  • 21.5.2.
  • Diet
  • 21.5.3.
  • Smoking
  • 21.5.4.
  • Medical conditions and medication use
  • 21.5.5.
  • Control of Physiological Function by the GCN2/ATF4 Pathway
  • Genetic factors
  • 21.6.
  • Homocysteinaemia is a Risk Factor
  • 21.6.1.
  • Coronary heart disease, stroke and venous thromboembolism
  • 21.6.2.
  • Cognitive function, dementia and Alzheimer's disease
  • 21.7.
  • Clinical Efficacy of Folate and Vitamins B6 and B12
  • 21.7.1.
  • 13.5.1.
  • Homocysteine, folate, vitamin B6, vitamin B12 and vascular disease
  • 21.7.2.
  • Coronary heart disease, stroke and venous thromboembolism
  • 21.7.2.1.
  • Observational studies
  • 21.7.2.2.
  • Randomized clinical trials
  • 21.7.3.
  • Cognitive function, dementia and Alzheimer's disease
  • 21.8.
  • Amino acid deficiency sensing by GCN2 triggers food aversion
  • Neural Tube Defects
  • 21.9.
  • Methodological Issues
  • 21.9.1.
  • Differences among studies of homocysteine, B vitamins and vascular disease
  • 21.10.
  • Conclusions
  • 22.
  • Modified Amino Acid-Based Molecules: Accumulation and Health Implications
  • S. Bengmark
  • 13.5.2.
  • 22.1.
  • Abstract
  • 22.2.
  • Introduction
  • 22.3.
  • Effects of Heating on Food Quality
  • 22.4.
  • AGE/ALE Accumulation in the Body
  • 22.5.
  • Modern Molecular Biology: Essential for Understanding the Effects of AGE / ALE
  • Role of GCN2 in the regulation of neuronal plasticity
  • 22.6.
  • RAGE: a Master Switch and Key to Inflammation
  • 22.7.
  • Factors Underlying Enhanced Systemic Inflammation
  • 22.8.
  • Dietary Choice
  • 22.9.
  • Dairy in Focus
  • 22.10.
  • AGE/ALE and Disease
  • 13.5.3.
  • 22.10.1.
  • Allergy and autoimmune diseases
  • 22.10.2.
  • Alzheimer's disease and other neurodegenerative diseases
  • 22.10.3.
  • Atherosclerosis and other cardiovascular disorders
  • 22.10.4.
  • Cancer
  • 22.10.5.
  • Cataract and other eye disorders
  • Specific examples of the role of amino acids in the adaptation to protein deficiency
  • Role of GCN2 in the regulation of fatty-acid homeostasis during leucine deprivation
  • 22.10.6.
  • Diabetes
  • 22.10.7.
  • Endocrine disorders
  • 22.10.8.
  • Gastrointestinal disorders
  • 22.10.9.
  • Liver disorders
  • 22.10.10.
  • Lung disorders
  • 13.5.4.
  • 22.10.11.
  • Rheumatoid arthritis and other skeletomuscular disorders
  • 22.10.12.
  • Skin and oral cavity issues
  • 22.10.13.
  • Urogenital disorders
  • 22.11.
  • Foods Rich in AGE/ALE
  • 22.12.
  • Prevention and Treatment of AGE/ALE Accumulation
  • Role of GCN2 in the immune system
  • 22.12.1.
  • Changing food preparation habits
  • 22.12.2.
  • Energy restriction
  • 22.12.3.
  • Antioxidants and vitamins --
  • 13.6.
  • Conclusions
  • pt. III
  • NUTRITION
  • 14.
  • Endogenous Amino Acids at the Terminal Ileum of the Adult Human
  • P.J. Moughan
  • 13.3.2.1.
  • 14.1.
  • Abstract
  • 14.2.
  • Introduction
  • 14.3.
  • Endogenous Heal Amino Acid Losses - How Should They be Determined?
  • 14.3.1.
  • collection of ileal digesta
  • 14.3.2.
  • Quantification of the endogenous component
  • Protein undernutrition
  • 14.3.2.1.
  • Protein-free diet
  • 14.3.2.2.
  • Enzyme hydrolysed protein/ultrafiltration method
  • 14.3.2.3.
  • Isotope dilution
  • 14.4.
  • Determined Estimates of Endogenous Heal Nitrogen and Amino Acid Losses in Humans
  • 14.5.
  • Factors Influencing Endogenous Heal Amino Acid Losses
  • 13.3.2.2.
  • 14.6.
  • Practical Relevance of Measures of Endogenous Ileal Nitrogen
  • 14.6.1.
  • Metabolic cost
  • 14.6.2.
  • Contribution to amino acid requirement
  • 14.6.3.
  • True ileal amino acid digestibility
  • 14.7.
  • Conclusions
  • Imbalanced diet
  • 15.
  • Metabolic Availability of Amino Acids in Food Proteins: New Methodology
  • R.O. Ball
  • 15.1.
  • Abstract
  • 15.2.
  • Introduction
  • 15.3.
  • Methods to Estimate Protein Quality
  • 15.4.
  • 13.4.
  • Metabolic Availability of Amino Acids in Food Protein Sources
  • 15.4.1.
  • Concepts of indicator amino acid oxidation
  • 15.4.2.
  • Application of indicator amino acid oxidation to determine metabolic availability of amino acids in food protein sources
  • 15.4.3.
  • Validation of the metabolic availability method
  • 15.5.
  • Conclusions
  • 16.
  • Conclusions
  • D. Kirik
  • 26.1.
  • Abstract
  • 26.2.
  • Introduction
  • 26.3.
  • L-DOPA
  • 26.4.
  • Dopamine Biosynthesis in Physiological Conditions
  • 26.5.
  • 23.
  • Basic Principles of L-DOPA Pharmacotherapy in Parkinson's Disease
  • 26.6.
  • Clinical Pharmacokinetics and Pharmacodynamics of L-DOPA Therapy
  • 26.7.
  • L-DOPA-induced Dyskinesias
  • 26.8.
  • Gene Therapy-mediated Continuous DOPA Delivery in the Parkinsonian Brain
  • 26.9.
  • Summary and Concluding Remarks
  • 27.
  • Phenylketonuria: Newborn Identification Through to Adulthood
  • Amino Acid Profiles for Diagnostic Applications
  • T. Ando
  • 27.1.
  • Abstract
  • 27.2.
  • Introduction
  • 27.3.
  • Correlation-based Analysis of Amino Acids
  • 27.4.
  • Development of Amino Acid Diagnostics
  • K. Moseley
  • 27.4.1.
  • Background
  • 27.4.2.
  • Initial studies
  • 27.4.3.
  • Measurement of amino acids
  • 27.5.
  • Clinical Applications
  • 27.5.1.
  • Factors influencing stability of data
  • 23.1.
  • 27.5.2.
  • Application of AminoIndex to liver fibrosis
  • 27.5.3.
  • Application of AminoIndex to metabolic syndrome
  • 27.5.4.
  • Application of AminoIndex to colorectal and breast cancer
  • 27.6.
  • Future Perspectives
  • pt. V
  • CONCLUSIONS
  • Abstract
  • 28.
  • Emergence of a New Momentum
  • J.P.F. D'Mello
  • 28.1.
  • Abstract
  • 28.2.
  • Rationale
  • 28.3.
  • Objectives and Approach
  • 28.4.
  • 23.2.
  • Key Enzymes and Pathways
  • 28.4.1.
  • Glutamate dehydrogenase
  • 28.4.2.
  • Aminotransferases (transaminases)
  • 28.4.3.
  • Glutamate decarboxylase
  • 28.4.4.
  • Glutamine synthetase
  • 28.4.5.
  • Introduction
  • Glutaminase
  • 28.4.6.
  • Ornithine decarboxylase
  • 28.4.7.
  • Urea-cycle enzymes
  • 28.4.7.1.
  • Arginase
  • 28.4.8.
  • Nitric oxide synthase
  • 28.4.9.
  • 23.3.
  • Histidine decarboxylase
  • 28.4.10.
  • Serine racemase
  • 28.4.11.
  • Hydroxylases
  • 28.4.12.
  • Enzymes of methionine metabolism
  • 28.5.
  • Neurotransmitters
  • 28.5.1.
  • Background
  • Glutamate
  • 28.5.2.
  • Aspartate
  • 28.5.3.
  • Proline
  • 28.5.4.
  • γ-Aminobutyrate and glycine
  • 28.5.5.
  • D-Serine
  • 28.5.6.
  • Contents note continued:
  • 23.4.
  • β-Alanine and taurine
  • 28.5.7.
  • Gases
  • 28.6.
  • Molecular Interactions
  • 28.6.1.
  • Transport
  • 28.6.2.
  • Leucine signalling
  • 28.6.3.
  • Current Problem: Maternal PKU Therapy
  • Hormonal modulation
  • 28.6.4.
  • Umami flavour
  • 28.6.5.
  • Post-translational adducts
  • 28.6.5.1.
  • Advanced glycation end-products
  • 28.6.5.2.
  • Proline-rich proteins
  • 28.7.
  • 23.5.
  • Clinical Support
  • 28.7.1.
  • Biochemical considerations
  • 28.7.2.
  • Supplements
  • 28.8.
  • Food Toxicology
  • 28.8.1.
  • Nitrate and nitrite
  • 28.8.2.
  • Role of Tetrahydrobiopterin (BH4) Treatment for Patients with PKU
  • Plant neurotoxins
  • 28.8.3.
  • Monosodium glutamate
  • 28.8.4.
  • Maillard products
  • 28.8.5.
  • Lysinoalanine
  • 28.9.
  • Disorders
  • 28.9.1.
  • 23.6.
  • Clinical amino acid imbalance
  • 28.9.2.
  • Obesity
  • 28.9.3.
  • Neuropathologies
  • 28.9.3.1.
  • Conditions associated with glutamate excitotoxicity
  • 28.9.3.2.
  • Psychological and cognitive impairments: emerging methodology
  • 28.9.4.
  • Dietary Therapy
  • Cardiovascular disease
  • 28.9.5.
  • Diabetes
  • 28.9.6.
  • Cancer
  • 28.9.7.
  • Genetic defects
  • 28.9.8.
  • Risk factors
  • 28.9.9.
  • 23.6.1.
  • Therapeutics
  • 28.9.10.
  • Dietary modulation
  • 28.9.11.
  • Non-protein ammo acids in cancer prevention
  • 28.9.12.
  • Molecular targets
  • 28.9.12.1.
  • Enzymes
  • 28.9.12.2.
  • Large neutral amino acids
  • Aminoacidergic and monoaminergic receptors
  • 28.9.12.3.
  • Transporters
  • 28.10.
  • Innovation
  • 28.10.1.
  • Modelling
  • 28.11.
  • Summary
  • 28.11.1.
  • 23.6.2.
  • Underlying theme
  • 28.11.2.
  • Metabolism
  • 28.11.3.
  • Nutrition
  • 28.11.4.
  • Food safety
  • 28.11.5.
  • Health and disease
  • 28.12.
  • Glycomacropeptide
  • Outlook
  • 22.12.4.
  • 23.6.3.
  • Tetrahydrobiopterin
  • 23.7.
  • Future Research
  • 23.8.
  • Conclusions
  • 24.
  • Principles of Rapid Tryptophan Depletion and its Use in Research on Neuropsychiatric Disorders
  • F.D. Zepf
  • 24.1.
  • Supplementing histidine, taurine, carnitine, or carnosine
  • Abstract
  • 24.2.
  • Introduction
  • 24.3.
  • Basic Principles
  • 24.4.
  • RTD Protocol
  • 24.4.1.
  • Before administration
  • 24.4.2.
  • 22.12.5.
  • Administration of amino acids
  • 24.5.
  • Effects on Mood
  • 24.6.
  • Side Effects and Metabolic Complications
  • 24.7.
  • Positron Emission Tomography Studies
  • 24.8.
  • Conclusions
  • 25.
  • Pharmaceuticals
  • Excitatory Amino Acids in Neurological and Neurodegenerative Disorders
  • A. Rodriguez-Moreno
  • 25.1.
  • Abstract
  • 25.2.
  • Introduction
  • 25.3.
  • Alzheimer's Disease and Glutamate Receptors
  • 25.4.
  • Parkinson's Disease and Glutamate Receptors
  • 22.13.
  • 25.5.
  • Huntington's Disease
  • 25.5.1.
  • Animal models
  • 25.6.
  • Schizophrenia and Glutamate Receptors
  • 25.7.
  • Depression and Glutamate Receptors
  • 25.8.
  • Epilepsy and Glutamate Neurotransmission
  • Pro- and Synbiotics
  • 25.8.1.
  • Excitatory amino acids in epilepsy
  • 25.8.2.
  • Kainate receptors in epilepsy
  • 25.9.
  • Amyotrophic Lateral Sclerosis and Excitatory Amino Acids
  • 25.9.1.
  • Glutamate receptors and excitoroxicity in ALS
  • 25.9.2.
  • Glutamate metabolism and transport in ALS
  • 22.14.
  • 25.10.
  • Stroke
  • 25.10.1.
  • Background
  • 25.10.2.
  • Glutamate and glutamate receptors in cerebral ischaemia
  • 25.11.
  • Conclusions
  • 26.
  • Efficacy of L-DOPA Therapy in Parkinson's Disease
Dimensions
25 cm.
Extent
xxxiv, 544 p.
Isbn
9781845937980
Isbn Type
(alk. paper)
Lccn
2011010103
Other physical details
ill.
System control number
  • (CaMWU)u2512099-01umb_inst
  • 2551453
  • (Sirsi) i9781845937980
  • (DNLM)101558266
  • (OCoLC)708219464
Label
Amino acids in human nutrition and health, edited by J.P.F. D'Mello
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • 1.2.
  • 3.5.1.2.
  • Wound healing
  • 3.5.1.3.
  • Neuroprotection/regeneration
  • 3.5.2.
  • Arginase in disease
  • 3.5.2.1.
  • Diabetes
  • 3.5.2.2.
  • Hypertension
  • Introduction
  • 3.5.2.3.
  • Sickle cell disease
  • 3.5.2.4.
  • Erectile dysfunction
  • 3.5.2.5.
  • Asthma
  • 3.5.2.6.
  • Ischaemia/reperfusion injury
  • 3.5.2.7.
  • Atherosclerosis
  • 1.3.
  • 3.5.2.8.
  • Nephropathy
  • 3.5.2.9.
  • Cancer
  • 3.5.2.10.
  • Parasitic infection
  • 3.5.2.11.
  • Hyperargininaemia
  • 3.5.2.12.
  • Ageing
  • GDH in Animals
  • 3.5.2.13.
  • Retinopathy
  • 3.6.
  • Regulation of Activity
  • 3.6.1.
  • Humoral factors
  • 3.6.1.1.
  • Reactive oxygen species
  • 3.6.1.2.
  • Angiotensin II
  • 1.3.1.
  • 3.6.2.
  • Elevation of arginase activity and signal transduction mechanisms
  • 3.7.
  • Arginase Inhibitors
  • 3.8.
  • Conclusions
  • 4.
  • Bypassing the Endothelial L-Arginine-Nitric Oxide Pathway: Effects of Dietary Nitrite and Nitrate on Cardiovascular Function
  • T. Rassaf
  • 4.1.
  • Structure of animal GDH
  • Abstract
  • 4.2.
  • Introduction
  • 4.3.
  • L-Arginine: A Semi-Essential Amino Acid in Human Physiology
  • 4.4.
  • L-Arginine is the Substrate of the Nitric Oxide Synthases: The L-Arginine-Nitric Oxide Pathway
  • 4.5.
  • L-Arginine in Cardiovascular Disease: Perspectives and Limitations
  • 4.6.
  • 1.4.
  • Nitric Oxide Generation without NO-Synthase? Bypassing the L-Arginine Pathway
  • 4.7.
  • Nitrate-Nitrite-Nitric Oxide Pathway
  • 4.8.
  • Effects of Nitrite and Nitrate in Human Physiology
  • 4.9.
  • Dietary Nitrate and Nitrite
  • 4.10.
  • Conclusions
  • 4.11.
  • Active Site
  • Acknowledgements
  • 5.
  • Histidine Decarboxylase
  • A. Zlomuzica
  • 5.1.
  • Abstract
  • 5.2.
  • Introduction
  • 5.3.
  • Histidine Decarboxylase Enzyme
  • 1.4.1.
  • 5.4.
  • Histidine Decarboxylase Gene
  • 5.4.1.
  • Gene polymorphism
  • 5.5.
  • Pharmacological Inhibition
  • 5.6.
  • Mrna Antisense And Gene Knockout
  • 5.7.
  • Neurophysiology and Behaviour
  • GDH dynamics
  • 5.7.1.
  • Brain neurotransmitters
  • 5.7.2.
  • Nutrition
  • 5.7.3.
  • Sleep, waking and arousal
  • 5.7.4.
  • Reward and drugs
  • 5.7.5.
  • Stress, fear and anxiety
  • Machine generated contents note:
  • 1.4.2.
  • 5.7.6.
  • Learning and memory
  • 5.7.6.1.
  • Dementia
  • 5.8.
  • Summary and Conclusions
  • 5.9.
  • Acknowledgements
  • 6.
  • Glutamate Decarboxylase
  • GTP inhibition site
  • Y. Nakamura
  • 6.1.
  • Abstract
  • 6.2.
  • Introduction
  • 6.3.
  • Distribution of GABA
  • 6.3.1.
  • GABA storage, release and uptake
  • 6.3.2.
  • 1.4.3.
  • GABA receptors
  • 6.3.3.
  • Metabolism of GABA
  • 6.3.4.
  • Decarboxylation reaction by GAD
  • 6.3.5.
  • Distribution and characterization of GAD
  • 6.3.6.
  • Purification of GAD protein
  • 6.3.7.
  • ADP/second NADH site paradox
  • Gene structure of GAD
  • 6.4.
  • GAD 65 in Blood Leucocytes
  • 6.5.
  • Taste Signalling
  • 6.6.
  • Suggestions for Future Research
  • 6.7.
  • Conclusions
  • 6.8.
  • 1.5.
  • Acknowledgements
  • 7.
  • Glutaminase
  • J. Marquez
  • 7.1.
  • Abstract
  • 7.2.
  • Introduction
  • 7.3.
  • Mammalian Glutaminase Genes and Transcripts
  • Role of GDH in Insulin Homeostasis
  • 7.3.1.
  • Gls gene and transcripts
  • 7.3.2.
  • Gls2 gene and transcripts
  • 7.4.
  • Mammalian Glutaminase Enzymes
  • 7.4.1.
  • Molecular structures and kinetic properties
  • 7.4.2.
  • Subcellular locations
  • 1.5.1.
  • 7.5.
  • Glutaminase Expression in Mammalian Brain
  • 7.5.1.
  • Expression of glutaminase L in astrocytes
  • 7.6.
  • State of Art and Perspectives
  • 7.7.
  • Conclusions
  • 7.8.
  • Acknowledgements
  • HHS
  • 8.
  • D-Serine and Serine Racemase in the Retina
  • V. Ganapathy
  • 8.1.
  • Abstract
  • 8.2.
  • Introduction
  • 8.3.
  • NMDA Receptor and D-serine as a Co-agonist
  • 8.4.
  • 1.5.2.
  • D-Serine in the Retina
  • 8.5.
  • Mechanisms of D-Serine Uptake in the Retina
  • 8.6.
  • D-Serine and Serine Racemase in Retinal Neurons
  • 8.7.
  • Role of D-Serine in the Retina
  • 8.8.
  • Role of D-Serine and Serine Racemase in Neuronal Cell Death
  • 8.9.
  • SIRT4 mutations
  • Conclusions
  • 8.10.
  • Acknowledgements
  • 9.
  • Tryptophan Hydroxylase
  • J. Haavik
  • 9.1.
  • Abstract
  • 9.2.
  • Introduction
  • pt. I
  • 1.5.3.
  • 9.3.
  • General Properties
  • 9.4.
  • Structure and Function of TPH
  • 9.4.1.
  • Domain organization
  • 9.4.2.
  • Ligand binding
  • 9.4.3.
  • Catalytic mechanism
  • SCHAD mutations
  • 9.5.
  • Enzyme Regulation
  • 9.5.1.
  • Inhibition of TPH
  • 9.5.2.
  • Regulation of TPH
  • 9.5.3.
  • Phosphorylation of TPH
  • 9.5.4.
  • 14-3-3 binding to TPH
  • 1.6.
  • 9.6.
  • TPH Knockout Studies
  • 9.7.
  • Implications of TPH Dysfunction in Human Health
  • 9.8.
  • Concluding Remarks and Future Research
  • 10.
  • Methionine Metabolism
  • S.C. Lu
  • 10.1.
  • Evolution of GDH Allostery
  • Abstract
  • 10.2.
  • Introduction
  • 10.3.
  • Proliferating Hepatocytes and Liver Cancer Cells Show a Less Efficient Methionine Metabolism than Normal Differentiated Hepatocytes
  • 10.4.
  • How Does a Less Efficient Methionine Metabolism Facilitate Hepatocyte Proliferation?
  • 10.5.
  • Regulation of Methionine Metabolism is a Crucial Step in Liver Regeneration
  • 10.6.
  • 1.6.1.
  • How do Both a Defect and an Excess of Liver SAMe Trigger HCC?
  • 10.7.
  • Does Changing the Metabolism of Hepatocytes through Manipulation of Methionine Metabolism Hold Promise for Improving HCC Prognosis?
  • 10.8.
  • Conclusions
  • 10.9.
  • Financial Support
  • pt. II
  • DYNAMICS
  • 11.
  • Possible therapeutics for GDH-mediated insulin disorders
  • Amino Acid Transport Across Each Side of the Blood-Brain Barrier
  • I.A. Simpson
  • 11.1.
  • Abstract
  • 11.2.
  • Introduction
  • 11.3.
  • New Approach to Studying the BBB
  • 11.4.
  • Facilitative Amino Acid Transporters of the BBB
  • 1.6.2.
  • 11.4.1.
  • Facilitative transport of large essential neutral amino acids: system L1
  • 11.4.2.
  • Facilitative transport of cationic amino acids: system y+
  • 11.4.3.
  • Facilitative transport of glutamine: system n
  • 11.4.4.
  • Facilitative transport of acidic amino acids: system xG-
  • 11.5.
  • Amino Acid Gradients between Brain and Plasma
  • Other novel inhibitors of GDH
  • 11.6.
  • Na+-dependent Transport Systems of the BBB
  • 11.6.1.
  • Na+-dependent transport of large neutral amino acids: system Na+-LNAA
  • 11.6.2.
  • Na+-dependent transport of small non-essential neutral amino acids: system A
  • 11.6.3.
  • Na+-dependent transport of some large and small neutral amino acids: system ASC
  • 11.6.4.
  • Na+-dependent transport of nitrogen-rich amino acids: system N
  • 1.7.
  • 11.6.5.
  • Na+-dependent transport of acidic amino acids: the EAAT family
  • 11.7.
  • Organization of the Various Transport Systems
  • 11.8.
  • Branched-chain Amino Acids and Brain Function
  • 11.9.
  • Glutamate in Plasma and Brain
  • 11.9.1.
  • Compartmentation of glutamate
  • Conclusions
  • 11.9.2.
  • Excitotoxicity hypothesis of neuronal death
  • 11.9.3.
  • Glutamate in circulation
  • 11.10.
  • Facilitative and Active Transport Systems for Glutamate in the BBB
  • 11.10.1.
  • Facilitative transport of glutamate in the luminal membrane
  • 11.10.2.
  • Active transport systems expel glutamate from the ECF
  • ENZYMES AND METABOLISM
  • 1.8.
  • 11.10.3.
  • Current concept of glutamate transport across the BBB
  • 11.11.
  • Glutamine and Ammonia Balance
  • 11.11.1.
  • Facilitative transport of glutamine at the luminal membrane
  • 11.11.2.
  • Na+-dependent transport of glutamine at the abluminal membrane
  • 11.11.3.
  • Ammonia balance
  • Acknowledgements
  • 11.12.
  • γ-Glutamyl Cycle and the Role of Pyroglutamate on Na+-dependent Carriers
  • 11.13.
  • Concluding Comments
  • 11.14.
  • Acknowledgements
  • 12.
  • Inter-organ Fluxes of Amino Acids
  • C.H.C. Dejong
  • 12.1.
  • 2.
  • Abstract
  • 12.2.
  • Introduction
  • 12.3.
  • Glutamine and Ammonia
  • 12.3.1.
  • Metabolism
  • 12.3.2.
  • Pathophysiology
  • 12.3.2.1.
  • Aminotransferases
  • Critical illness and trauma
  • 12.3.2.2.
  • Hyperammonaemia
  • 12.4.
  • Glutamine, Citrulline and Arginine
  • 12.4.1.
  • Physiology
  • 12.4.1.1.
  • Glutamine and citrulline
  • 12.4.1.2.
  • M.E. Conway
  • Citrulline and arginine
  • 12.4.2.
  • Metabolism after enteral administration
  • 12.4.2.1.
  • Glutamine
  • 12.4.2.2.
  • Arginine
  • 12.4.2.3.
  • Citrulline
  • 12.5.
  • 2.1.
  • Recommendations for Future Research
  • 12.6.
  • Conclusions
  • 13.
  • Cellular Adaptation to Amino Acid Availability: Mechanisms Involved in the Regulation of Gene Expression
  • P. Fafournoux
  • 13.1.
  • Abstract
  • 13.2.
  • Introduction
  • Abstract
  • 13.3.
  • Regulation of Amino Acid Metabolism and Homeostasis in the Whole Animal
  • 13.3.1.
  • Free amino acid pool --
  • 2.2.
  • Introduction
  • 2.2.1.
  • 1.
  • Transamination
  • 2.2.2.
  • Cellular distribution of aminotransferases
  • 2.2.2.1.
  • Cellular distribution of the BCAT proteins
  • 2.2.2.2.
  • Cellular distribution of the ALT proteins
  • 2.2.2.3.
  • Cellular distribution of the AST proteins
  • 2.3.
  • Glutamate Dehydrogenase
  • Role of Aminotransferases in Brain Metabolism
  • 2.3.1.
  • role of BCAT in brain metabolism
  • 2.4.
  • Alanine Aminotransferases and Glutamate
  • 2.5.
  • Aspartate Aminotransferases and their Role in the Malate-Aspartate Shuttle and Glutamate Metabolism
  • 2.6.
  • Pathological Conditions Resulting from Impaired Aminotransferase Metabolism
  • 2.6.1.
  • C.A. Stanley
  • Maple syrup urine disease
  • 2.6.2.
  • Glutamate toxicity and neurodegeneration
  • 2.6.3.
  • Redox sensitivity of BCAT
  • 2.7.
  • Aminotransferase Proteins as Biomarkers of Disease
  • 2.7.1.
  • Mild elevation of ALT and AST
  • 2.7.2.
  • 1.1.
  • Moderate/marked elevation of ALT and AST
  • 2.8.
  • Conclusions and Future Directions
  • 3.
  • Arginase
  • R.B. Caldwell
  • 3.1.
  • Abstract
  • 3.2.
  • Introduction
  • Abstract
  • 3.3.
  • Isoforms and Distribution
  • 3.4.
  • Structure and Location of Arginase
  • 3.5.
  • Involvement of Arginase in Health and Disease
  • 3.5.1.
  • Arginase in health
  • 3.5.1.1.
  • Ammonia detoxification
  • Molecular Mechanisms Involved in the Regulation of Gene Expression by Amino Acid Limitation
  • Amino Acid Requirements: Quantitative Estimates
  • A.V. Kurpad
  • 16.1.
  • Abstract
  • 16.2.
  • Introduction
  • 16.3.
  • Nitrogen Balance
  • 16.4.
  • Isotopic Tracer Methods
  • 13.4.1.
  • 16.4.1.
  • Direct amino acid oxidation and balance
  • 16.4.2.
  • Indicator amino acid oxidation and balance
  • 16.4.3.
  • Post-prandial protein utilization
  • 16.5.
  • Factorial Prediction of Amino Acid Requirements
  • 16.6.
  • Estimates of the Amino Acid Requirement in Potentially Adapted States
  • Transcriptional activation of mammalian genes by amino acid starvation
  • 16.7.
  • Conclusions
  • 17.
  • Amino Acid Supplements and Muscular Performance
  • S.M. Phillips
  • 17.1.
  • Abstract
  • 17.2.
  • Introduction
  • 17.3.
  • 13.4.1.1.
  • Amino Acids and Protein Turnover
  • 17.4.
  • Muscle Protein Synthesis
  • 17.5.
  • Enhancing Adaptations to Resistance Exercise with Amino Acid and Protein Supplements
  • 17.5.1.
  • Acute studies
  • 17.5.2.
  • Chronic studies
  • 17.5.3.
  • Regulation of the human CHOP gene by amino acid starvation
  • Dose and distribution considerations to maximize MPS
  • 17.6.
  • Enhancing Endurance Exercise Performance and Recovery with Amino Acid and Protein Supplements
  • 17.6.1.
  • Amino acids and recovery from endurance exercise
  • 17.6.2.
  • Role of protein and amino acids in endurance exercise performance
  • 17.7.
  • Cell Signalling Responses to Amino Acids and Resistance Exercise
  • 17.7.1.
  • 13.4.1.2.
  • Cell signalling pathways involved in translation initiation and elongation
  • 17.7.2.
  • Cell signalling response to amino acids
  • 17.7.3.
  • Cell signalling response to amino acids and exercise
  • 17.8.
  • Timing Considerations
  • 17.8.1.
  • Nutrient timing and acute exercise
  • 17.8.2.
  • Regulation of the asparagine synthetase gene by amino acid starvation
  • Nutrient timing and chronic exercise
  • 17.9.
  • Amino Acid Source
  • 17.9.1.
  • Acute studies
  • 17.9.2.
  • Chronic studies
  • 17.10.
  • Role of Leucine and Amino Acid Supplements in the Sarcopenia of Ageing
  • 17.11.
  • 13.4.1.3.
  • Conclusions and Future Directions
  • 18.
  • Amino Acids in Clinical and Nutritional Support: Glutamine in Duchenne Muscular Dystrophy
  • R. Hankard
  • 18.1.
  • Abstract
  • 18.2.
  • Introduction
  • 18.3.
  • Duchenne Muscular Dystrophy: the Role of Muscle in Glutamine Metabolism
  • Transcription factors binding the AARE
  • 18.4.
  • Glutamine Supplementation in Children with Duchenne Muscular Dystrophy
  • 18.4.1.
  • Acute glutamine on protein metabolism
  • 18.4.2.
  • Long-term glutamine on clinical outcomes
  • 18.5.
  • Conclusions and Future Research
  • 19.
  • Adverse Effects
  • 13.4.1.3.1.
  • J.P.F. D'Mello
  • 19.1.
  • Abstract
  • 19.2.
  • Introduction
  • 19.3.
  • Classification
  • 19.4.
  • Amino Acid Imbalance
  • 19.4.1.
  • Contents note continued:
  • ATF4
  • Concept
  • 19.4.2.
  • Dietary or nutritional amino acid imbalance
  • 19.4.2.1.
  • Anorexia
  • 19.4.2.2.
  • Dietary preferences
  • 19.4.2.3.
  • Mechanisms
  • 19.4.2.4.
  • 13.4.1.3.2.
  • Effects on nutrient utilization
  • 19.5.
  • Clinical Amino Acid Imbalance
  • 19.5.1.
  • Septic encephalopathy
  • 19.5.2.
  • Liver disorders
  • 19.5.3.
  • Cancer and other conditions
  • 19.5.4.
  • ATF2
  • Appetite
  • 19.6.
  • Amino Acid Antagonisms
  • 19.6.1.
  • Branched-chain amino acid antagonisms
  • 19.6.1.1.
  • Leucine and pellagra
  • 19.6.2.
  • lysine-arginine antagonism
  • 19.6.2.1.
  • 13.4.1.3.3.
  • Hyperlysinaemia
  • 19.6.3.
  • Antagonisms induced by non-protein amino acids
  • 19.6.3.1.
  • Analogues of arginine
  • 19.6.3.1.1.
  • Canavanine
  • 19.6.3.1.2.
  • Homoarginine
  • 19.6.3.1.3.
  • Role of ATF4 and ATF2 in the control of the AARE-dependent transcription
  • Indospicine
  • 19.6.3.2.
  • Analogues of sulphur-containing amino acids
  • 19.6.3.2.1.
  • Selenoamino acids
  • 19.6.3.2.2.
  • S-Methylcysteine sulphoxide
  • 19.6.3.3.
  • Mimosine
  • 19.6.3.4.
  • 13.4.2.
  • Neurotoxic amino acids
  • 19.6.3.4.1.
  • β-N-Oxalylamino-L-alanine
  • 19.6.3.4.2.
  • β-Cyanoalanine
  • 19.6.3.4.3.
  • αγ-Diaminobutyric acid
  • 19.6.3.4.4.
  • β-N-Methylamino-L-alanine
  • 19.6.3.5.
  • Signalling pathways regulated by amino acid limitation
  • Hypoglycin A
  • 19.6.3.6.
  • Mechanisms
  • 19.6.3.6.1.
  • Arginine analogues
  • 19.6.3.6.2.
  • Analogues of the sulphur-containing amino acids
  • 19.6.3.6.3.
  • Mimosine
  • 19.6.3.6.4.
  • 13.4.2.1.
  • Neurotoxic amino acids
  • 19.6.3.6.5.
  • Hypoglycin A
  • 19.6.3.6.6.
  • Underlying themes
  • 19.7.
  • Amino Acid Toxicity
  • 19.7.1.
  • Glutamate
  • 19.7.2.
  • GCN2/ATF4 pathway (the AAR pathway)
  • Homocysteine
  • 19.7.3.
  • Modified lysine residues
  • 19.7.4.
  • Phenylalanine
  • 19.8.
  • Potential Applications
  • 19.8.1.
  • Neuropsychological investigations
  • 19.8.2.
  • 13.4.2.2.
  • Therapeutic aspects
  • 19.9.
  • Conclusions
  • 20.
  • Umami Taste of Glutamate
  • X. Li
  • 20.1.
  • Abstract
  • 20.2.
  • Introduction
  • 13.3.2.
  • Signalling pathway leading to ATF2 phosphorylation
  • 20.3.
  • Taste Sensory System
  • 20.4.
  • T1R Family of Taste Receptor
  • 20.5.
  • Functional Expression of T1R
  • 20.6.
  • T1R Knockout Mice
  • 20.7.
  • Molecular Mechanism of Umami Synergy
  • 13.4.2.3.
  • 20.8.
  • Umami Signal Transduction
  • 20.9.
  • Functional Neuroimaging of Umami Taste
  • 20.10.
  • Conclusions
  • pt. IV
  • HEALTH
  • 21.
  • Homocysteine Status: Factors Affecting and Health Risks
  • Other signalling pathways
  • B. Steffen
  • 21.1.
  • Abstract
  • 21.2.
  • Introduction and Objectives
  • 21.3.
  • Metabolism of Homocysteine
  • 21.4.
  • Distribution of Homocysteine Concentrations in the US Population
  • 21.5.
  • 13.5.
  • Determinants of Serum Total Homocysteine Concentrations
  • 21.5.1.
  • Demographic characteristics
  • 21.5.2.
  • Diet
  • 21.5.3.
  • Smoking
  • 21.5.4.
  • Medical conditions and medication use
  • 21.5.5.
  • Control of Physiological Function by the GCN2/ATF4 Pathway
  • Genetic factors
  • 21.6.
  • Homocysteinaemia is a Risk Factor
  • 21.6.1.
  • Coronary heart disease, stroke and venous thromboembolism
  • 21.6.2.
  • Cognitive function, dementia and Alzheimer's disease
  • 21.7.
  • Clinical Efficacy of Folate and Vitamins B6 and B12
  • 21.7.1.
  • 13.5.1.
  • Homocysteine, folate, vitamin B6, vitamin B12 and vascular disease
  • 21.7.2.
  • Coronary heart disease, stroke and venous thromboembolism
  • 21.7.2.1.
  • Observational studies
  • 21.7.2.2.
  • Randomized clinical trials
  • 21.7.3.
  • Cognitive function, dementia and Alzheimer's disease
  • 21.8.
  • Amino acid deficiency sensing by GCN2 triggers food aversion
  • Neural Tube Defects
  • 21.9.
  • Methodological Issues
  • 21.9.1.
  • Differences among studies of homocysteine, B vitamins and vascular disease
  • 21.10.
  • Conclusions
  • 22.
  • Modified Amino Acid-Based Molecules: Accumulation and Health Implications
  • S. Bengmark
  • 13.5.2.
  • 22.1.
  • Abstract
  • 22.2.
  • Introduction
  • 22.3.
  • Effects of Heating on Food Quality
  • 22.4.
  • AGE/ALE Accumulation in the Body
  • 22.5.
  • Modern Molecular Biology: Essential for Understanding the Effects of AGE / ALE
  • Role of GCN2 in the regulation of neuronal plasticity
  • 22.6.
  • RAGE: a Master Switch and Key to Inflammation
  • 22.7.
  • Factors Underlying Enhanced Systemic Inflammation
  • 22.8.
  • Dietary Choice
  • 22.9.
  • Dairy in Focus
  • 22.10.
  • AGE/ALE and Disease
  • 13.5.3.
  • 22.10.1.
  • Allergy and autoimmune diseases
  • 22.10.2.
  • Alzheimer's disease and other neurodegenerative diseases
  • 22.10.3.
  • Atherosclerosis and other cardiovascular disorders
  • 22.10.4.
  • Cancer
  • 22.10.5.
  • Cataract and other eye disorders
  • Specific examples of the role of amino acids in the adaptation to protein deficiency
  • Role of GCN2 in the regulation of fatty-acid homeostasis during leucine deprivation
  • 22.10.6.
  • Diabetes
  • 22.10.7.
  • Endocrine disorders
  • 22.10.8.
  • Gastrointestinal disorders
  • 22.10.9.
  • Liver disorders
  • 22.10.10.
  • Lung disorders
  • 13.5.4.
  • 22.10.11.
  • Rheumatoid arthritis and other skeletomuscular disorders
  • 22.10.12.
  • Skin and oral cavity issues
  • 22.10.13.
  • Urogenital disorders
  • 22.11.
  • Foods Rich in AGE/ALE
  • 22.12.
  • Prevention and Treatment of AGE/ALE Accumulation
  • Role of GCN2 in the immune system
  • 22.12.1.
  • Changing food preparation habits
  • 22.12.2.
  • Energy restriction
  • 22.12.3.
  • Antioxidants and vitamins --
  • 13.6.
  • Conclusions
  • pt. III
  • NUTRITION
  • 14.
  • Endogenous Amino Acids at the Terminal Ileum of the Adult Human
  • P.J. Moughan
  • 13.3.2.1.
  • 14.1.
  • Abstract
  • 14.2.
  • Introduction
  • 14.3.
  • Endogenous Heal Amino Acid Losses - How Should They be Determined?
  • 14.3.1.
  • collection of ileal digesta
  • 14.3.2.
  • Quantification of the endogenous component
  • Protein undernutrition
  • 14.3.2.1.
  • Protein-free diet
  • 14.3.2.2.
  • Enzyme hydrolysed protein/ultrafiltration method
  • 14.3.2.3.
  • Isotope dilution
  • 14.4.
  • Determined Estimates of Endogenous Heal Nitrogen and Amino Acid Losses in Humans
  • 14.5.
  • Factors Influencing Endogenous Heal Amino Acid Losses
  • 13.3.2.2.
  • 14.6.
  • Practical Relevance of Measures of Endogenous Ileal Nitrogen
  • 14.6.1.
  • Metabolic cost
  • 14.6.2.
  • Contribution to amino acid requirement
  • 14.6.3.
  • True ileal amino acid digestibility
  • 14.7.
  • Conclusions
  • Imbalanced diet
  • 15.
  • Metabolic Availability of Amino Acids in Food Proteins: New Methodology
  • R.O. Ball
  • 15.1.
  • Abstract
  • 15.2.
  • Introduction
  • 15.3.
  • Methods to Estimate Protein Quality
  • 15.4.
  • 13.4.
  • Metabolic Availability of Amino Acids in Food Protein Sources
  • 15.4.1.
  • Concepts of indicator amino acid oxidation
  • 15.4.2.
  • Application of indicator amino acid oxidation to determine metabolic availability of amino acids in food protein sources
  • 15.4.3.
  • Validation of the metabolic availability method
  • 15.5.
  • Conclusions
  • 16.
  • Conclusions
  • D. Kirik
  • 26.1.
  • Abstract
  • 26.2.
  • Introduction
  • 26.3.
  • L-DOPA
  • 26.4.
  • Dopamine Biosynthesis in Physiological Conditions
  • 26.5.
  • 23.
  • Basic Principles of L-DOPA Pharmacotherapy in Parkinson's Disease
  • 26.6.
  • Clinical Pharmacokinetics and Pharmacodynamics of L-DOPA Therapy
  • 26.7.
  • L-DOPA-induced Dyskinesias
  • 26.8.
  • Gene Therapy-mediated Continuous DOPA Delivery in the Parkinsonian Brain
  • 26.9.
  • Summary and Concluding Remarks
  • 27.
  • Phenylketonuria: Newborn Identification Through to Adulthood
  • Amino Acid Profiles for Diagnostic Applications
  • T. Ando
  • 27.1.
  • Abstract
  • 27.2.
  • Introduction
  • 27.3.
  • Correlation-based Analysis of Amino Acids
  • 27.4.
  • Development of Amino Acid Diagnostics
  • K. Moseley
  • 27.4.1.
  • Background
  • 27.4.2.
  • Initial studies
  • 27.4.3.
  • Measurement of amino acids
  • 27.5.
  • Clinical Applications
  • 27.5.1.
  • Factors influencing stability of data
  • 23.1.
  • 27.5.2.
  • Application of AminoIndex to liver fibrosis
  • 27.5.3.
  • Application of AminoIndex to metabolic syndrome
  • 27.5.4.
  • Application of AminoIndex to colorectal and breast cancer
  • 27.6.
  • Future Perspectives
  • pt. V
  • CONCLUSIONS
  • Abstract
  • 28.
  • Emergence of a New Momentum
  • J.P.F. D'Mello
  • 28.1.
  • Abstract
  • 28.2.
  • Rationale
  • 28.3.
  • Objectives and Approach
  • 28.4.
  • 23.2.
  • Key Enzymes and Pathways
  • 28.4.1.
  • Glutamate dehydrogenase
  • 28.4.2.
  • Aminotransferases (transaminases)
  • 28.4.3.
  • Glutamate decarboxylase
  • 28.4.4.
  • Glutamine synthetase
  • 28.4.5.
  • Introduction
  • Glutaminase
  • 28.4.6.
  • Ornithine decarboxylase
  • 28.4.7.
  • Urea-cycle enzymes
  • 28.4.7.1.
  • Arginase
  • 28.4.8.
  • Nitric oxide synthase
  • 28.4.9.
  • 23.3.
  • Histidine decarboxylase
  • 28.4.10.
  • Serine racemase
  • 28.4.11.
  • Hydroxylases
  • 28.4.12.
  • Enzymes of methionine metabolism
  • 28.5.
  • Neurotransmitters
  • 28.5.1.
  • Background
  • Glutamate
  • 28.5.2.
  • Aspartate
  • 28.5.3.
  • Proline
  • 28.5.4.
  • γ-Aminobutyrate and glycine
  • 28.5.5.
  • D-Serine
  • 28.5.6.
  • Contents note continued:
  • 23.4.
  • β-Alanine and taurine
  • 28.5.7.
  • Gases
  • 28.6.
  • Molecular Interactions
  • 28.6.1.
  • Transport
  • 28.6.2.
  • Leucine signalling
  • 28.6.3.
  • Current Problem: Maternal PKU Therapy
  • Hormonal modulation
  • 28.6.4.
  • Umami flavour
  • 28.6.5.
  • Post-translational adducts
  • 28.6.5.1.
  • Advanced glycation end-products
  • 28.6.5.2.
  • Proline-rich proteins
  • 28.7.
  • 23.5.
  • Clinical Support
  • 28.7.1.
  • Biochemical considerations
  • 28.7.2.
  • Supplements
  • 28.8.
  • Food Toxicology
  • 28.8.1.
  • Nitrate and nitrite
  • 28.8.2.
  • Role of Tetrahydrobiopterin (BH4) Treatment for Patients with PKU
  • Plant neurotoxins
  • 28.8.3.
  • Monosodium glutamate
  • 28.8.4.
  • Maillard products
  • 28.8.5.
  • Lysinoalanine
  • 28.9.
  • Disorders
  • 28.9.1.
  • 23.6.
  • Clinical amino acid imbalance
  • 28.9.2.
  • Obesity
  • 28.9.3.
  • Neuropathologies
  • 28.9.3.1.
  • Conditions associated with glutamate excitotoxicity
  • 28.9.3.2.
  • Psychological and cognitive impairments: emerging methodology
  • 28.9.4.
  • Dietary Therapy
  • Cardiovascular disease
  • 28.9.5.
  • Diabetes
  • 28.9.6.
  • Cancer
  • 28.9.7.
  • Genetic defects
  • 28.9.8.
  • Risk factors
  • 28.9.9.
  • 23.6.1.
  • Therapeutics
  • 28.9.10.
  • Dietary modulation
  • 28.9.11.
  • Non-protein ammo acids in cancer prevention
  • 28.9.12.
  • Molecular targets
  • 28.9.12.1.
  • Enzymes
  • 28.9.12.2.
  • Large neutral amino acids
  • Aminoacidergic and monoaminergic receptors
  • 28.9.12.3.
  • Transporters
  • 28.10.
  • Innovation
  • 28.10.1.
  • Modelling
  • 28.11.
  • Summary
  • 28.11.1.
  • 23.6.2.
  • Underlying theme
  • 28.11.2.
  • Metabolism
  • 28.11.3.
  • Nutrition
  • 28.11.4.
  • Food safety
  • 28.11.5.
  • Health and disease
  • 28.12.
  • Glycomacropeptide
  • Outlook
  • 22.12.4.
  • 23.6.3.
  • Tetrahydrobiopterin
  • 23.7.
  • Future Research
  • 23.8.
  • Conclusions
  • 24.
  • Principles of Rapid Tryptophan Depletion and its Use in Research on Neuropsychiatric Disorders
  • F.D. Zepf
  • 24.1.
  • Supplementing histidine, taurine, carnitine, or carnosine
  • Abstract
  • 24.2.
  • Introduction
  • 24.3.
  • Basic Principles
  • 24.4.
  • RTD Protocol
  • 24.4.1.
  • Before administration
  • 24.4.2.
  • 22.12.5.
  • Administration of amino acids
  • 24.5.
  • Effects on Mood
  • 24.6.
  • Side Effects and Metabolic Complications
  • 24.7.
  • Positron Emission Tomography Studies
  • 24.8.
  • Conclusions
  • 25.
  • Pharmaceuticals
  • Excitatory Amino Acids in Neurological and Neurodegenerative Disorders
  • A. Rodriguez-Moreno
  • 25.1.
  • Abstract
  • 25.2.
  • Introduction
  • 25.3.
  • Alzheimer's Disease and Glutamate Receptors
  • 25.4.
  • Parkinson's Disease and Glutamate Receptors
  • 22.13.
  • 25.5.
  • Huntington's Disease
  • 25.5.1.
  • Animal models
  • 25.6.
  • Schizophrenia and Glutamate Receptors
  • 25.7.
  • Depression and Glutamate Receptors
  • 25.8.
  • Epilepsy and Glutamate Neurotransmission
  • Pro- and Synbiotics
  • 25.8.1.
  • Excitatory amino acids in epilepsy
  • 25.8.2.
  • Kainate receptors in epilepsy
  • 25.9.
  • Amyotrophic Lateral Sclerosis and Excitatory Amino Acids
  • 25.9.1.
  • Glutamate receptors and excitoroxicity in ALS
  • 25.9.2.
  • Glutamate metabolism and transport in ALS
  • 22.14.
  • 25.10.
  • Stroke
  • 25.10.1.
  • Background
  • 25.10.2.
  • Glutamate and glutamate receptors in cerebral ischaemia
  • 25.11.
  • Conclusions
  • 26.
  • Efficacy of L-DOPA Therapy in Parkinson's Disease
Dimensions
25 cm.
Extent
xxxiv, 544 p.
Isbn
9781845937980
Isbn Type
(alk. paper)
Lccn
2011010103
Other physical details
ill.
System control number
  • (CaMWU)u2512099-01umb_inst
  • 2551453
  • (Sirsi) i9781845937980
  • (DNLM)101558266
  • (OCoLC)708219464

Library Locations

  • Albert D. Cohen Management LibraryBorrow it
    181 Freedman Crescent, Winnipeg, MB, R3T 5V4, CA
    49.807878 -97.129961
  • Architecture/Fine Arts LibraryBorrow it
    84 Curry Place, Winnipeg, MB, CA
    49.807716 -97.136226
  • Archives and Special CollectionsBorrow it
    25 Chancellors Circle (Elizabeth Dafoe Library), Room 330, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Bibliothèque Alfred-Monnin (Université de Saint-Boniface)Borrow it
    200, avenue de la Cathédrale, Local 2110, Winnipeg, MB, R2H 0H7, CA
    49.888861 -97.119735
  • Bill Larson Library (Grace Hospital)Borrow it
    300 Booth Drive, G-227, Winnipeg, MB, R3J 3M7, CA
    49.882400 -97.276436
  • Carolyn Sifton - Helene Fuld Library (St. Boniface General Hospital)Borrow it
    409 Tache Avenue, Winnipeg, MB, R2H 2A6, CA
    49.883388 -97.126050
  • Concordia Hospital LibraryBorrow it
    1095 Concordia Avenue, Winnipeg, MB, R2K 3S8, CA
    49.913252 -97.064683
  • Donald W. Craik Engineering LibraryBorrow it
    75B Chancellors Circle (Engineering Building E3), Room 361, Winnipeg, MB, R3T 2N2, CA
    49.809053 -97.133292
  • E.K. Williams Law LibraryBorrow it
    224 Dysart Road, Winnipeg, MB, R3T 5V4, CA
    49.811829 -97.131017
  • Eckhardt-Gramatté Music LibraryBorrow it
    136 Dafoe Road (Taché Arts Complex), Room 257, Winnipeg, MB, R3T 2N2, CA
    49.807964 -97.132222
  • Elizabeth Dafoe LibraryBorrow it
    25 Chancellors Circle, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Fr. H. Drake Library (St. Paul's College)Borrow it
    70 Dysart Road, Winnipeg, MB, R3T 2M6, CA
    49.810605 -97.138184
  • J.W. Crane Memorial Library (Deer Lodge Centre)Borrow it
    2109 Portage Avenue, Winnipeg, MB, R3J 0L3, CA
    49.878000 -97.235520
  • Libraries Annex (not open to the public; please see web page for details)Borrow it
    25 Chancellors Circle (in the Elizabeth Dafoe Library), Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Neil John Maclean Health Sciences LibraryBorrow it
    727 McDermot Avenue (Brodie Centre), 200 Level, Winnipeg, MB, R3E 3P5, CA
    49.903563 -97.160554
  • Sciences and Technology LibraryBorrow it
    186 Dysart Road, Winnipeg, MB, R3T 2M8, CA
    49.811526 -97.133257
  • Seven Oaks General Hospital LibraryBorrow it
    2300 McPhillips Street, Winnipeg, MB, R2V 3M3, CA
    49.955177 -97.148865
  • Sister St. Odilon Library (Misericordia Health Centre)Borrow it
    99 Cornish Avenue, Winnipeg, MB, R3C 1A2, CA
    49.879592 -97.160425
  • St. John's College LibraryBorrow it
    92 Dysart Road, Winnipeg, MB, R3T 2M5, CA
    49.811242 -97.137156
  • Victoria General Hospital LibraryBorrow it
    2340 Pembina Highway, Winnipeg, MB, R3T 2E8, CA
    49.806755 -97.152739
  • William R Newman Library (Agriculture)Borrow it
    66 Dafoe Road, Winnipeg, MB, R3T 2R3, CA
    49.806936 -97.135525
Processing Feedback ...