The Resource Antibiotics : targets, mechanisms and resistance, edited by Claudio O. Gualerzi, Letizia Brandi, Attilio Fabbretti, and Cynthia L. Pon, (electronic resource)

Antibiotics : targets, mechanisms and resistance, edited by Claudio O. Gualerzi, Letizia Brandi, Attilio Fabbretti, and Cynthia L. Pon, (electronic resource)

Label
Antibiotics : targets, mechanisms and resistance
Title
Antibiotics
Title remainder
targets, mechanisms and resistance
Statement of responsibility
edited by Claudio O. Gualerzi, Letizia Brandi, Attilio Fabbretti, and Cynthia L. Pon
Contributor
Editor of compilation
Subject
Language
eng
Cataloging source
NhCcYBP
Dewey number
615.3/29
Illustrations
illustrations
Index
index present
LC call number
RM267
LC item number
.A57 2014
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
NLM call number
QV 350
http://library.link/vocab/relatedWorkOrContributorDate
  • 1942-
  • 1942-
http://library.link/vocab/relatedWorkOrContributorName
  • Gualerzi, Claudio O.
  • Brandi, Letizia
  • Fabbretti, Attilio
  • Pon, Cynthia L.
  • Ebooks Corporation
http://library.link/vocab/subjectName
  • Antibiotics
  • Drug targeting
  • Drug resistance
  • Anti-Bacterial Agents
Label
Antibiotics : targets, mechanisms and resistance, edited by Claudio O. Gualerzi, Letizia Brandi, Attilio Fabbretti, and Cynthia L. Pon, (electronic resource)
Link
http://www.umanitoba.eblib.com/EBLWeb/patron/?target=patron&extendedid=P_1380171_0
Instantiates
Publication
Note
Description based on print version record
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • 1.3.
  • 4.1.
  • To Be or Not to Be Resistant: Why and How Antibiotic Resistance Mechanisms Develop and Spread among Bacteria
  • 4.1.1.
  • Horizontal and Vertical Transmission of Resistance Genes
  • 4.2.
  • Bacterial Resistance to Antibiotics by Enzymatic Degradation or Modification
  • 4.2.1.
  • Antibiotic Resistance by Hydrolytic Enzymes
  • 4.2.1.1.
  • Î2-Lactamases
  • Î2 Lactams
  • 4.2.1.2.
  • Macrolide Esterases
  • 4.2.1.3.
  • Epoxidases
  • 4.2.1.4.
  • Proteases
  • 4.2.2.
  • Antibiotic Transferases Prevent Target Recognition
  • 4.2.2.1.
  • Acyltransfer
  • 1.4.
  • 4.2.2.2.
  • Phosphotransferases
  • 4.2.2.3.
  • Nucleotidyltransferases
  • 4.2.2.4.
  • ADP-Ribosyltransferases
  • 4.2.2.5.
  • Glycosyltransferases
  • 4.2.3.
  • Redox Enzymes
  • Linear Peptides
  • 4.3.
  • Antibiotic Target Alteration: The Trick Exists and It Is in the Genetics
  • 4.3.1.
  • Low-Affinity Homologous Genes
  • 4.3.1.1.
  • Rifamycin Low-Affinity RpoB
  • 4.3.1.2.
  • Mutated Genes Conferring Resistance to Quinolone, Fluoroquinolone and Aminocoumarins
  • 4.3.1.3.
  • PBP2a: A Low-Affinity Penicillin-Binding Protein
  • 1.4.1.
  • 4.3.1.4.
  • Dihydropteroate Synthases Not Inhibited by Sulfonamide
  • 4.3.2.
  • Chemical Modification of Antibiotic Target
  • 4.3.2.1.
  • 23S rRNA Modification
  • 4.3.2.2.
  • 16S rRNA Modification
  • 4.3.2.3.
  • Reprogramming Chemical Composition of a Bacterial Cell-Wall Precursor
  • Glycopeptides-Dalbaheptides
  • 4.3.3.
  • Ribosomal Protection and Tetracycline Resistance
  • 4.3.4.
  • Chromosomal Mutations in Genes Required for Membrane Phospholipid Metabolism: Lipopeptide Resistance
  • 4.3.5.
  • Covalent Modifications on Lipopolysaccharide Core Conferring Polymixine Resistance
  • 4.4.
  • Efflux Systems
  • 4.4.1.
  • ATP-Binding Cassette (ABC) Superfamily
  • 1.4.2.
  • 4.4.2.
  • Major Facilitator Superfamily (MSF)
  • 4.4.3.
  • Small Multidrug-Resistance Family (SMR)
  • 4.4.4.
  • Resistance-Nodulation-Division (RND) Superfamily
  • 4.4.5.
  • Multidrug and Toxic Compound Extrusion (MATE) Family
  • 4.5.
  • Case Stories of Intrinsic and Acquired Resistances
  • Lantibiotics
  • 4.5.1.
  • Î2-Lactam Resistome of P. aeruginosa: Intrinsic Resistance Is Genetically Determined
  • 4.5.2.
  • Acquired Antibiotic Resistance in S. aureus
  • 4.5.2.1.
  • Acquired Resistance to Î2-Lactams and Glycopeptides
  • 4.5.2.2.
  • Acquired Resistance to Fluoroquinolones
  • 4.6.
  • Strategies to Overcome Resistance
  • 1.5.
  • References
  • 5.
  • Fitness Costs of Antibiotic Resistance
  • Pietro Alifano
  • 5.1.
  • Introduction
  • 5.2.
  • Methods to Estimate Fitness
  • 5.2.1.
  • Experimental Methods
  • Cyclic Peptides
  • 5.2.2.
  • Epidemiological Methods
  • 5.3.
  • Factors Affecting Fitness
  • 5.3.1.
  • Genetic Nature of the Resistant Determinant
  • 5.3.2.
  • Expression of the Antibiotic-Resistance Determinant
  • 5.3.3.
  • Microbial Cell Physiology, Metabolism, and Lifestyle
  • Machine generated contents note:
  • 1.6.
  • 5.3.4.
  • Genetic Background of the Antibiotic-Resistant Mutant
  • 5.4.
  • Mechanisms and Dynamics Causing Persistence of Chromosomal and Plasmid-Borne Resistance Determinants
  • 5.4.1.
  • Compensatory Genetic Mechanisms That Restore or Improve Fitness without Loss of Resistance
  • 5.4.2.
  • Linked Selection and Segregation Stability of Resistance Determinants
  • 5.4.3.
  • Reacquisition of Antimicrobial Resistance
  • Thiazolylpeptides
  • References
  • 6.
  • Inhibitors of Cell-Wall Synthesis
  • Margherita Sosio
  • 6.1.
  • Introduction
  • 6.2.
  • MraY Inhibitors
  • 6.3.
  • Lipid II Targeting Compounds
  • 1.7.
  • 6.3.1.
  • Glycopeptides
  • 6.3.2.
  • Lantibiotics
  • 6.3.3.
  • Ramoplanin and Enduracidin
  • 6.3.4.
  • Other Compounds
  • 6.4.
  • Bactoprenol Phosphate
  • Macrolactones
  • 6.5.
  • Conclusions
  • Acknowledgments
  • References
  • 7.
  • Inhibitors of Bacterial Cell Partitioning
  • Dulal Panda
  • 7.1.
  • Introduction
  • 7.2.
  • 1.7.1.
  • Bacterial Cell Division
  • 7.2.1.
  • Filamentous Temperature-Sensitive Z (FtsZ)
  • 7.2.2.
  • Structure and Assembly Properties of FtsZ
  • 7.2.3.
  • Z-Ring: A Dynamic Structure That Drives Bacterial Cell Division
  • 7.2.4.
  • Proteins Regulating FtsZ Assembly
  • 7.2.5.
  • Macrolides
  • Proteins Involved in Septum Formation
  • 7.2.6.
  • Role of Other Cytoskeleton Proteins in Bacterial Cell Division
  • 7.3.
  • Cell Division Proteins as Therapeutic Targets
  • 7.3.1.
  • FtsZ as a Therapeutic Target
  • 7.3.1.1.
  • Identification of FtsZ-Targeting Antibacterial Agents
  • 7.3.1.2.
  • 1.7.2.
  • FtsZ Inhibitors
  • 7.3.2.
  • Other Cell Division Proteins as Therapeutic Targets
  • 7.4.
  • Status of FtsZ-Targeting Compounds: From Laboratory to Clinic
  • 7.5.
  • Conclusion
  • Acknowledgment
  • Abbreviations
  • References
  • Difimicin
  • 8.
  • Membrane as a Novel Target Site for Antibiotics to Kill Persisting Bacterial Pathogens
  • julian G. Hurdle
  • 8.1.
  • Introduction
  • 8.2.
  • Challenge of Treating Dormant Infections
  • 8.3.
  • Discovery Strategies to Prevent-or Kill Dormant Bacteria
  • 8.4.
  • 1.8.
  • Why Targeting the Membrane Could Be a Suitable Strategy
  • 8.5.
  • Target Essentiality and Selectivity
  • 8.6.
  • Multiple Modes of Actions
  • 8.6.1.
  • Bactericidal and Low Potential for Resistance Development
  • 8.7.
  • Therapeutic Use of Membrane-Damaging Agents against Biofilms
  • 8.8.
  • Ansamycins--Rifamycins
  • New Approaches to Identifying Compounds That Kill Dormant Bacteria
  • 8.9.
  • Challenges for Biofilm Control with Membrane-Active Agents
  • 8.9.1.
  • Test Methods
  • 8.9.2.
  • Spectrum of Activity
  • 8.9.3.
  • Pharmacological
  • 8.9.4.
  • 1.
  • 1.9.
  • Genetic Resistance
  • 8.10.
  • Potential for Membrane-Damaging Agents in TB Disease
  • 8.11.
  • Application to Treatment of Clostridium difficile Infection
  • 8.12.
  • Is Inhibition of Fatty Acid/Phospholipid Biosynthesis Also an Approach?
  • 8.13.
  • Concluding Remarks
  • References
  • Tetracyclines
  • 9.
  • Bacterial Membrane, a Key for Controlling Drug Influx and Efflux
  • Jean-Marie Pages
  • 9.1.
  • Introduction
  • 9.2.
  • Mechanical Barrier
  • 9.2.1.
  • Outer Membrane Barrier and Porin Involvement
  • 9.2.2.
  • 1.10.
  • Membrane Modification
  • 9.2.3.
  • Efflux Barrier
  • 9.3.
  • Circumventing the Bacterial Membrane Barrier
  • 9.3.1.
  • Increasing the Influx: Antibiotic plus Permeabilizer, "Increase In"
  • 9.3.1.1.
  • Permeabilizers such as Polymyxins
  • 9.3.1.2.
  • Oxazolidinones
  • Natural Compounds
  • 9.3.1.3.
  • Silver Nanoparticles
  • 9.3.2.
  • Blocking the Efflux: Antibiotic plus Efflux Blocker, "Decrease Eef"
  • 9.3.2.1.
  • Chemical Response
  • 9.3.2.2.
  • Natural Products as Efflux Modulators
  • 9.4.
  • 1.11.
  • Conclusion
  • Acknowledgments
  • References
  • 10.
  • Interference with Bacterial Cell-to-Cell Chemical Signaling in Development of New Anti-Infectives
  • Vanessa Sperandio
  • 10.1.
  • Introduction
  • 10.2.
  • Two-Component Systems (TCSs) as Potential Anti-Infective Targets
  • Lincosamides
  • 10.3.
  • WalK/WalR and MtrB/MtrA: Case Studies of Essential TCSs as Drug Targets
  • 10.4.
  • Targeting Nonessential TCS
  • 10.4.1.
  • QseC/QseB
  • 10.4.2.
  • AgrC/AgrA
  • 10.4.3.
  • FsrC/FsrA
  • 1.12.
  • 10.4.4.
  • PhoQ/PhoP
  • 10.4.5.
  • HrpX/HrpY
  • 10.5.
  • Non-TCSs Targeting Biofilm Formation and Quorum Sensing in Pseudomonas spp.
  • 10.6.
  • Conclusions
  • References
  • 11.
  • Pleuromutilins
  • Recent Developments in Inhibitors of Bacterial Type IIA Topoisomerases
  • Michael N. Gwynn
  • 11.1.
  • Introduction
  • 11.2.
  • DNA-Gate Inhibitors
  • 11.2.1.
  • Quinolones and Related Compounds
  • 11.2.1.1.
  • Development of the Fluoroquinolone Class and Mechanism of Action
  • 1.13.
  • 11.2.1.2.
  • Phase 2 Fluoroquinolones
  • 11.2.1.3.
  • Quinazolinediones ("Diones")
  • 11.2.1.4.
  • Isothiazolones
  • 11.2.2.
  • "NBTIs", Novel Bacterial Type II Topoisomerase Inhibitors
  • 11.2.3.
  • QPT (Quinoline Pyrimidine Trione)
  • Quinolones
  • 11.2.4.
  • Other DNA-Gate Inhibitors
  • 11.2.4.1.
  • Albicidin
  • 11.2.4.2.
  • Clerocidin
  • 11.2.4.3.
  • Nybomycin
  • 11.2.4.4.
  • Macromolecular Inhibitors That Stabilize Complexes with DNA
  • Chemist's Survey of Different Antibiotic Classes
  • 1.14.
  • 11.3.
  • ATPase-Domain Inhibitors
  • 11.3.1.
  • Natural Products That Inhibit the ATPase Domain
  • 11.3.1.1.
  • Aminocoumarins
  • 11.3.1.2.
  • Cyclothialidines
  • 11.3.1.3.
  • Kibdelomycin and Amycolamicin
  • Aminocoumarins
  • 11.3.2.
  • Recent GyrB and Dual-Targeting GyrB/ParE ATPase Inhibitors
  • 11.3.2.1.
  • Aminobenzimidazole Ureas
  • 11.3.2.2.
  • Imidazopvridines and Triazolopyridines --
  • References
  • 2.
  • Antibacterial Discovery: Problems and Possibilities
  • Lynn L. Silver
  • 2.1.
  • Introduction
  • 2.2.
  • Why Is Antibacterial Discovery Difficult? The Problems
  • Sonia Ilaria Maffioli
  • 2.3.
  • Target Choice: Essentiality
  • 2.4.
  • Target Choice: Resistance
  • 2.5.
  • Cell Entry
  • 2.6.
  • Screening Strategies
  • 2.6.1.
  • Empirical Screens
  • 1.1.
  • 2.6.2.
  • Phenotypic Whole-Cell Screens
  • 2.6.3.
  • In Vitro Screens for Single-Target Inhibitors
  • 2.6.4.
  • Chemicals to Screen
  • 2.6.4.1.
  • Chemical Collections
  • 2.7.
  • Natural Products
  • Introduction
  • 2.8.
  • Computational Chemistry, Virtual Screening, Structure- and Fragment-Based Drug Design (SBDD and FBDD)
  • 2.9.
  • Conclusions
  • References
  • 3.
  • Impact of Microbial Natural Products on Antibacterial Drug Discovery
  • Gabriella Molinari
  • 3.1.
  • Introduction
  • 1.2.
  • 3.2.
  • Natural Products for Drug Discovery
  • 3.3.
  • Microbial Natural Products
  • 3.4.
  • Challenge of Finding Novel Antibiotics from New Natural Sources
  • 3.5.
  • Workflow for Drug Discovery from Microbial Natural Products
  • 3.6.
  • Antimicrobial Activities: Targets for Screens
  • Aminoglycosides
  • 3.7.
  • Natural Products: A Continuing Source for Inspiration
  • 3.8.
  • Genome Mining in Natural Product Discovery
  • 3.9.
  • Conclusions
  • References
  • 4.
  • Antibiotics and Resistance: A Fatal Attraction
  • Anna Maria Puglia
  • Clinical Progression of ATPase Inhibitors
  • Denis Drainas
  • 14.1.
  • Introduction
  • 14.2.
  • Targeting RNase P with Antisense Strategies
  • 14.3.
  • Aminoglycosides
  • 14.4.
  • Peptidyltransferase Inhibitors
  • 14.5.
  • 11.4.
  • Substrate Masking by Synthetic Inhibitors
  • 14.6.
  • Peculiar Behavior of Macrolides on Bacterial RNase P
  • 14.7.
  • Antipsoriatic Compounds
  • 14.8.
  • Conclusions and Future Perspectives
  • References
  • 15.
  • Involvement of Ribosome Biogenesis in Antibiotic Function, Acquired Resistance, and Future Opportunities in Drug Discovery
  • Simocyclinones, Gyramides, and Other Miscellaneous Inhibitors
  • Jason P. Rife
  • 15.1.
  • Introduction
  • 15.2.
  • Ribosome Biogenesis
  • 15.3.
  • Antibiotics and Ribosome Biogenesis
  • 15.4.
  • Methyltransferases
  • 15.5.
  • 11.4.1.
  • Methyltransferase Integration into the Ribosome Biogenesis Pathway
  • 15.6.
  • Ribosome Biogenesis Factors, Virulence, and Vaccine Development
  • References
  • 16.
  • Aminoacyl-tRNA Synthetase Inhibitors
  • Thale C. Jarvis
  • 16.1.
  • Introduction
  • 16.2.
  • Simocyclinone D8
  • Enzymatic Mechanism of Action of aaRS
  • 16.2.1.
  • Condensation of Amino Acid and Cognate tRNA
  • 16.2.2.
  • Classification of aaRS
  • 16.2.3.
  • Fidelity and Proof Reading
  • 16.2.4.
  • Transamidation Pathway
  • 16.2.5.
  • 11.4.2.
  • aaRSs as Targets for Antimicrobial Agents: General Modes of Inhibition
  • 16.3.
  • aaRS Inhibitors
  • 16.3.1.
  • Mupirocin, a Paradigm
  • 16.3.2.
  • Old and New Compounds with aaRS Inhibitory Activity
  • 16.3.2.1.
  • Natural Products That Inhibit aaRS
  • 16.3.2.2.
  • Gyramides
  • AaRS Inhibitors Identified in Screening Programs
  • 16.3.3.
  • Novel aaRS Inhibitors in Clinical Development
  • 16.3.3.1.
  • CRS3123, a Fully Synthetic MetRS Inhibitor
  • 16.3.3.2.
  • AN2690 (Tavaborole) and AN3365 (GSK2251052), Boron-Containing LeuRS Inhibitors
  • 16.4.
  • Considerations for the Development of aaRS Inhibitors
  • 16.4.1.
  • 11.4.3.
  • Resistance Development
  • 16.4.2.
  • Selectivity over Eukarvotic and Mitochondrial Counterparts
  • 16.4.3.
  • Spectrum of Activity
  • 16.4.4.
  • Amino Acid Antagonism
  • 16.5.
  • Conclusions
  • References
  • Other Miscellaneous Inhibitors
  • 17.
  • Antibiotics Targeting Translation Initiation in Prokaryotes
  • Claudio O. Gualerzi
  • 17.1.
  • Introduction
  • 17.2.
  • Mechanism of Translation Initiation
  • 17.3.
  • Inhibitors of Folate Metabolism
  • 17.4.
  • 11.4.3.1.
  • Methionyl-tRNA Formyltransferase
  • 17.5.
  • Inhibitors of Peptide Deformylase
  • 17.6.
  • Inhibitors of Translation Initiation Factor IF2
  • 17.7.
  • PpGpp Analogs as Potential Translation Initiation Inhibitors
  • 17.8.
  • Translation Initiation Inhibitors Targeting the P-Site
  • References
  • Contents note continued:
  • Pyrazoles
  • 18.
  • Inhibitors of Bacterial Elongation Factor EF-Tu
  • Letizia Brandi
  • 18.1.
  • Introduction
  • 18.2.
  • Enacyloxins
  • 18.3.
  • Kirromycin
  • 18.4.
  • 11.4.3.2.
  • Pulvomycin
  • 18.5.
  • GE2270A
  • References
  • 19.
  • Aminoglycoside Antibiotics: Structural Decoding of Inhibitors Targeting the Ribosomal Decoding A Site
  • Eric Westhof
  • 19.1.
  • Introduction
  • 19.2.
  • Quercetin Derivatives
  • Chemical Structures of Aminoglycosides
  • 19.3.
  • Secondary Structures of the Target A Sites
  • 19.4.
  • Overview of the Molecular Recognition of Aminoglycosides by the Bacterial A Site
  • 19.5.
  • Role of Ring I: Specific Recognition of the Binding Pocket
  • 19.6.
  • Role of Ring II (2-DOS Ring): Locking the A-Site Switch in the "On" State
  • 19.7.
  • 11.4.3.3.
  • Dual Roles of Extra Rings: Improving the Binding Affinity and Eluding Defense Mechanisms
  • 19.8.
  • Binding of Semisynthetic Aminoglycosides to the Bacterial A Sites
  • 19.9.
  • Binding of Aminoglycosides to the Antibiotic-Resistant Bacterial Mutant and Protozoal Cytoplasmic A Sites
  • 19.10.
  • Binding of Aminoglycosides to the Human A Sites
  • 19.11.
  • Other Aminoglycosides Targeting the A Site but with Different Modes of Action
  • 19.12.
  • Macromolecular Inhibitors of DNA Binding
  • Aminoglycosides that Do Not Target the A Site
  • 19.13.
  • Nonaminoglycoside Antibiotic Targeting the A Site
  • 19.14.
  • Conclusions
  • References
  • 20.
  • Peptidyltransferase Inhibitors of the Bacterial Ribosome
  • Daniel Wilson
  • 20.1.
  • 11.5.
  • Peptide Bond Formation and Its Inhibition by Antibiotics
  • 20.2.
  • Puromycin Mimics the CCA-End of tRNAs
  • 20.3.
  • Chloramphenicols Inhibit A-tRNA Binding in an Amino-Acid-Specific Manner
  • 20.4.
  • Oxazolidinones Bind at the A-Site of the PTC
  • 20.5.
  • Lincosamide Action at the A-Site of the PTC
  • 20.6.
  • Conclusions and Perspectives
  • Blasticidin S Mimics the CCA-End of the P-tRNA at the PTC
  • 20.7.
  • Sparsomycin Prevents A-Site and Stimulates P-Site tRNA Binding
  • 20.8.
  • Pleuromutilins Overlap A- and P-Sites at the PTC
  • 20.9.
  • Synergistic Action of Streptogramins at the PTC
  • 20.10.
  • Future Perspectives
  • References
  • References
  • 21.
  • Antibiotics Inhibiting the Translocation Step of Protein Elongation on the Ribosome
  • Wolfgang Wintermeyer
  • 21.1.
  • Introduction
  • 21.2.
  • Translocation: Overview
  • 21.3.
  • Antibiotics Inhibiting Translocation
  • 21.3.1.
  • 12.
  • Target: 30S Subunit, Decoding Site
  • 21.3.2.
  • Target: 30S Body
  • 21.3.3.
  • Target: 30S Subunit, Head Domain
  • 21.3.4.
  • Target: Intersubunit Bridge 2a
  • 21.3.5.
  • Target: 50S Subunit, GTPase-Associated Center
  • 21.3.6.
  • Antibiotics Targeting Bacterial RNA Polymerase
  • Target: EF-G
  • 21.4.
  • Antibiotics Inhibiting Translocation in Eukaryotes
  • 21.4.1.
  • Target: 40S Subunit, Decoding Site
  • 21.4.2.
  • Target: 60S Subunit, E Site
  • 21.4.3.
  • Target: eEF2
  • 21.5.
  • 11.3.2.3.
  • Konstantin Brodolin
  • Antibiotics Inhibiting Ribosome Recycling in Bacteria
  • 21.5.1.
  • Target: Intersubunit Bridge 2a
  • 21.5.2.
  • Target: 50S Subunit, GTPase-Associated Center
  • 21.5.3.
  • Target: EF-G
  • 21.6.
  • Perspective
  • References
  • 12.1.
  • 22.
  • Antibiotics at the Ribosomal Exit Tunnel-Selected Structural Aspects
  • Ada Yonath
  • 22.1.
  • Introduction
  • 22.2.
  • Multifunctional Tunnel
  • 22.3.
  • Binding Pocket within the Multifunctional Tunnel
  • 22.4.
  • Introduction
  • Remotely Resistance
  • 22.5.
  • Resistance Warfare
  • 22.6.
  • Synergism
  • 22.7.
  • Pathogen and "Patients" Models
  • 22.8.
  • Conclusion and Future Considerations
  • Acknowledgments
  • 12.2.
  • References
  • 23.
  • Targeting HSP70 to Fight Cancer and Bad Bugs: One and the Same Battle?
  • Jean-Herve Alix
  • 23.1.
  • Novel Target: The Bacterial Chaperone HSP70
  • 23.2.
  • In vivo Screening for Compounds Targeting DnaK
  • 23.3.
  • Drugging HSP70
  • Antibiotics Blocking Nascent RNA Extension
  • 23.4.
  • Cooperation between the Bacterial Molecular Chaperones DnaK and HtpG
  • 23.5.
  • Drugging HSP90
  • References
  • 12.2.1.
  • Ansamycins (Rifamycins)
  • 12.2.2.
  • Sorangicin
  • 12.3.
  • Pyrrolopyrimidines and Pyrimidoindoles
  • Antibiotics Targeting RNAP Active Center
  • 12.3.1.
  • Streptolydigin and Other Acyl-Tetramic Acid Family Antibiotics
  • 12.3.2.
  • Lasso Peptides: Microcin j25 and Capistruin
  • 12.3.3.
  • CBR703 Series
  • 12.4.
  • Antibiotics Blocking Promoter Complex Formation
  • 12.4.1.
  • 11.3.2.4.
  • Myxopyronin
  • 12.4.2.
  • Corallopyronin
  • 12.4.3.
  • Ripostatin
  • 12.4.4.
  • Lipiarmycin
  • 12.5.
  • Inhibitors Hindering Ï-Core Interactions
  • 12.5.1.
  • Pyrazolthiazoles
  • SB2 and Analogs (Phenyl-Furanyl-Rodanines)
  • 12.6.
  • Inhibitors with Unknown Mechanisms and Binding Sites
  • 12.6.1.
  • GE23077
  • 12.6.2.
  • Ureidothiophene
  • 12.7.
  • Conclusions and Perspectives
  • 12.7.1.
  • 11.3.2.5.
  • Bacterial RNA Polymerase Inhibitors are a Valid Source of Clinical Drugs
  • 12.7.2.
  • Ï Subunit of RNAP Modulates Antibiotics Activity
  • References
  • 13.
  • Inhibitors Targeting Riboswitches and Ribozymes
  • Claudio O. Gualerzi
  • 13.1.
  • Introduction
  • 13.2.
  • Pyrrolamides
  • Riboswitches as Antibacterial Drug Targets
  • 13.2.1.
  • Purine Riboswitches
  • 13.2.2.
  • c-di-GMP (Bis-3'-5'-Cyclic Dimeric Guanosine Monophosphate) Riboswitch
  • 13.2.3.
  • FMN Riboswitches
  • 13.2.4.
  • Thiamine Pyrophosphate (TPP) Riboswitch
  • 13.2.5.
  • 11.3.2.6.
  • Lysine Riboswitch
  • 13.2.6.
  • SAM (S-Adenosylmethionine) Riboswitches
  • 13.3.
  • Ribozymes as Antibacterial Drug Targets
  • 13.4.
  • Concluding Remarks and Future Perspectives
  • References
  • 14.
  • Targeting Ribonuclease P
Dimensions
unknown
Extent
1 online resource.
Form of item
online
Isbn
9783527659715
Isbn Type
(electronic bk.)
Media category
computer
Media MARC source
rdamedia
Media type code
c
Reproduction note
Electronic reproduction.
Specific material designation
remote
System control number
(NhCcYBP)EBL1380171
Label
Antibiotics : targets, mechanisms and resistance, edited by Claudio O. Gualerzi, Letizia Brandi, Attilio Fabbretti, and Cynthia L. Pon, (electronic resource)
Link
http://www.umanitoba.eblib.com/EBLWeb/patron/?target=patron&extendedid=P_1380171_0
Publication
Note
Description based on print version record
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • 1.3.
  • 4.1.
  • To Be or Not to Be Resistant: Why and How Antibiotic Resistance Mechanisms Develop and Spread among Bacteria
  • 4.1.1.
  • Horizontal and Vertical Transmission of Resistance Genes
  • 4.2.
  • Bacterial Resistance to Antibiotics by Enzymatic Degradation or Modification
  • 4.2.1.
  • Antibiotic Resistance by Hydrolytic Enzymes
  • 4.2.1.1.
  • Î2-Lactamases
  • Î2 Lactams
  • 4.2.1.2.
  • Macrolide Esterases
  • 4.2.1.3.
  • Epoxidases
  • 4.2.1.4.
  • Proteases
  • 4.2.2.
  • Antibiotic Transferases Prevent Target Recognition
  • 4.2.2.1.
  • Acyltransfer
  • 1.4.
  • 4.2.2.2.
  • Phosphotransferases
  • 4.2.2.3.
  • Nucleotidyltransferases
  • 4.2.2.4.
  • ADP-Ribosyltransferases
  • 4.2.2.5.
  • Glycosyltransferases
  • 4.2.3.
  • Redox Enzymes
  • Linear Peptides
  • 4.3.
  • Antibiotic Target Alteration: The Trick Exists and It Is in the Genetics
  • 4.3.1.
  • Low-Affinity Homologous Genes
  • 4.3.1.1.
  • Rifamycin Low-Affinity RpoB
  • 4.3.1.2.
  • Mutated Genes Conferring Resistance to Quinolone, Fluoroquinolone and Aminocoumarins
  • 4.3.1.3.
  • PBP2a: A Low-Affinity Penicillin-Binding Protein
  • 1.4.1.
  • 4.3.1.4.
  • Dihydropteroate Synthases Not Inhibited by Sulfonamide
  • 4.3.2.
  • Chemical Modification of Antibiotic Target
  • 4.3.2.1.
  • 23S rRNA Modification
  • 4.3.2.2.
  • 16S rRNA Modification
  • 4.3.2.3.
  • Reprogramming Chemical Composition of a Bacterial Cell-Wall Precursor
  • Glycopeptides-Dalbaheptides
  • 4.3.3.
  • Ribosomal Protection and Tetracycline Resistance
  • 4.3.4.
  • Chromosomal Mutations in Genes Required for Membrane Phospholipid Metabolism: Lipopeptide Resistance
  • 4.3.5.
  • Covalent Modifications on Lipopolysaccharide Core Conferring Polymixine Resistance
  • 4.4.
  • Efflux Systems
  • 4.4.1.
  • ATP-Binding Cassette (ABC) Superfamily
  • 1.4.2.
  • 4.4.2.
  • Major Facilitator Superfamily (MSF)
  • 4.4.3.
  • Small Multidrug-Resistance Family (SMR)
  • 4.4.4.
  • Resistance-Nodulation-Division (RND) Superfamily
  • 4.4.5.
  • Multidrug and Toxic Compound Extrusion (MATE) Family
  • 4.5.
  • Case Stories of Intrinsic and Acquired Resistances
  • Lantibiotics
  • 4.5.1.
  • Î2-Lactam Resistome of P. aeruginosa: Intrinsic Resistance Is Genetically Determined
  • 4.5.2.
  • Acquired Antibiotic Resistance in S. aureus
  • 4.5.2.1.
  • Acquired Resistance to Î2-Lactams and Glycopeptides
  • 4.5.2.2.
  • Acquired Resistance to Fluoroquinolones
  • 4.6.
  • Strategies to Overcome Resistance
  • 1.5.
  • References
  • 5.
  • Fitness Costs of Antibiotic Resistance
  • Pietro Alifano
  • 5.1.
  • Introduction
  • 5.2.
  • Methods to Estimate Fitness
  • 5.2.1.
  • Experimental Methods
  • Cyclic Peptides
  • 5.2.2.
  • Epidemiological Methods
  • 5.3.
  • Factors Affecting Fitness
  • 5.3.1.
  • Genetic Nature of the Resistant Determinant
  • 5.3.2.
  • Expression of the Antibiotic-Resistance Determinant
  • 5.3.3.
  • Microbial Cell Physiology, Metabolism, and Lifestyle
  • Machine generated contents note:
  • 1.6.
  • 5.3.4.
  • Genetic Background of the Antibiotic-Resistant Mutant
  • 5.4.
  • Mechanisms and Dynamics Causing Persistence of Chromosomal and Plasmid-Borne Resistance Determinants
  • 5.4.1.
  • Compensatory Genetic Mechanisms That Restore or Improve Fitness without Loss of Resistance
  • 5.4.2.
  • Linked Selection and Segregation Stability of Resistance Determinants
  • 5.4.3.
  • Reacquisition of Antimicrobial Resistance
  • Thiazolylpeptides
  • References
  • 6.
  • Inhibitors of Cell-Wall Synthesis
  • Margherita Sosio
  • 6.1.
  • Introduction
  • 6.2.
  • MraY Inhibitors
  • 6.3.
  • Lipid II Targeting Compounds
  • 1.7.
  • 6.3.1.
  • Glycopeptides
  • 6.3.2.
  • Lantibiotics
  • 6.3.3.
  • Ramoplanin and Enduracidin
  • 6.3.4.
  • Other Compounds
  • 6.4.
  • Bactoprenol Phosphate
  • Macrolactones
  • 6.5.
  • Conclusions
  • Acknowledgments
  • References
  • 7.
  • Inhibitors of Bacterial Cell Partitioning
  • Dulal Panda
  • 7.1.
  • Introduction
  • 7.2.
  • 1.7.1.
  • Bacterial Cell Division
  • 7.2.1.
  • Filamentous Temperature-Sensitive Z (FtsZ)
  • 7.2.2.
  • Structure and Assembly Properties of FtsZ
  • 7.2.3.
  • Z-Ring: A Dynamic Structure That Drives Bacterial Cell Division
  • 7.2.4.
  • Proteins Regulating FtsZ Assembly
  • 7.2.5.
  • Macrolides
  • Proteins Involved in Septum Formation
  • 7.2.6.
  • Role of Other Cytoskeleton Proteins in Bacterial Cell Division
  • 7.3.
  • Cell Division Proteins as Therapeutic Targets
  • 7.3.1.
  • FtsZ as a Therapeutic Target
  • 7.3.1.1.
  • Identification of FtsZ-Targeting Antibacterial Agents
  • 7.3.1.2.
  • 1.7.2.
  • FtsZ Inhibitors
  • 7.3.2.
  • Other Cell Division Proteins as Therapeutic Targets
  • 7.4.
  • Status of FtsZ-Targeting Compounds: From Laboratory to Clinic
  • 7.5.
  • Conclusion
  • Acknowledgment
  • Abbreviations
  • References
  • Difimicin
  • 8.
  • Membrane as a Novel Target Site for Antibiotics to Kill Persisting Bacterial Pathogens
  • julian G. Hurdle
  • 8.1.
  • Introduction
  • 8.2.
  • Challenge of Treating Dormant Infections
  • 8.3.
  • Discovery Strategies to Prevent-or Kill Dormant Bacteria
  • 8.4.
  • 1.8.
  • Why Targeting the Membrane Could Be a Suitable Strategy
  • 8.5.
  • Target Essentiality and Selectivity
  • 8.6.
  • Multiple Modes of Actions
  • 8.6.1.
  • Bactericidal and Low Potential for Resistance Development
  • 8.7.
  • Therapeutic Use of Membrane-Damaging Agents against Biofilms
  • 8.8.
  • Ansamycins--Rifamycins
  • New Approaches to Identifying Compounds That Kill Dormant Bacteria
  • 8.9.
  • Challenges for Biofilm Control with Membrane-Active Agents
  • 8.9.1.
  • Test Methods
  • 8.9.2.
  • Spectrum of Activity
  • 8.9.3.
  • Pharmacological
  • 8.9.4.
  • 1.
  • 1.9.
  • Genetic Resistance
  • 8.10.
  • Potential for Membrane-Damaging Agents in TB Disease
  • 8.11.
  • Application to Treatment of Clostridium difficile Infection
  • 8.12.
  • Is Inhibition of Fatty Acid/Phospholipid Biosynthesis Also an Approach?
  • 8.13.
  • Concluding Remarks
  • References
  • Tetracyclines
  • 9.
  • Bacterial Membrane, a Key for Controlling Drug Influx and Efflux
  • Jean-Marie Pages
  • 9.1.
  • Introduction
  • 9.2.
  • Mechanical Barrier
  • 9.2.1.
  • Outer Membrane Barrier and Porin Involvement
  • 9.2.2.
  • 1.10.
  • Membrane Modification
  • 9.2.3.
  • Efflux Barrier
  • 9.3.
  • Circumventing the Bacterial Membrane Barrier
  • 9.3.1.
  • Increasing the Influx: Antibiotic plus Permeabilizer, "Increase In"
  • 9.3.1.1.
  • Permeabilizers such as Polymyxins
  • 9.3.1.2.
  • Oxazolidinones
  • Natural Compounds
  • 9.3.1.3.
  • Silver Nanoparticles
  • 9.3.2.
  • Blocking the Efflux: Antibiotic plus Efflux Blocker, "Decrease Eef"
  • 9.3.2.1.
  • Chemical Response
  • 9.3.2.2.
  • Natural Products as Efflux Modulators
  • 9.4.
  • 1.11.
  • Conclusion
  • Acknowledgments
  • References
  • 10.
  • Interference with Bacterial Cell-to-Cell Chemical Signaling in Development of New Anti-Infectives
  • Vanessa Sperandio
  • 10.1.
  • Introduction
  • 10.2.
  • Two-Component Systems (TCSs) as Potential Anti-Infective Targets
  • Lincosamides
  • 10.3.
  • WalK/WalR and MtrB/MtrA: Case Studies of Essential TCSs as Drug Targets
  • 10.4.
  • Targeting Nonessential TCS
  • 10.4.1.
  • QseC/QseB
  • 10.4.2.
  • AgrC/AgrA
  • 10.4.3.
  • FsrC/FsrA
  • 1.12.
  • 10.4.4.
  • PhoQ/PhoP
  • 10.4.5.
  • HrpX/HrpY
  • 10.5.
  • Non-TCSs Targeting Biofilm Formation and Quorum Sensing in Pseudomonas spp.
  • 10.6.
  • Conclusions
  • References
  • 11.
  • Pleuromutilins
  • Recent Developments in Inhibitors of Bacterial Type IIA Topoisomerases
  • Michael N. Gwynn
  • 11.1.
  • Introduction
  • 11.2.
  • DNA-Gate Inhibitors
  • 11.2.1.
  • Quinolones and Related Compounds
  • 11.2.1.1.
  • Development of the Fluoroquinolone Class and Mechanism of Action
  • 1.13.
  • 11.2.1.2.
  • Phase 2 Fluoroquinolones
  • 11.2.1.3.
  • Quinazolinediones ("Diones")
  • 11.2.1.4.
  • Isothiazolones
  • 11.2.2.
  • "NBTIs", Novel Bacterial Type II Topoisomerase Inhibitors
  • 11.2.3.
  • QPT (Quinoline Pyrimidine Trione)
  • Quinolones
  • 11.2.4.
  • Other DNA-Gate Inhibitors
  • 11.2.4.1.
  • Albicidin
  • 11.2.4.2.
  • Clerocidin
  • 11.2.4.3.
  • Nybomycin
  • 11.2.4.4.
  • Macromolecular Inhibitors That Stabilize Complexes with DNA
  • Chemist's Survey of Different Antibiotic Classes
  • 1.14.
  • 11.3.
  • ATPase-Domain Inhibitors
  • 11.3.1.
  • Natural Products That Inhibit the ATPase Domain
  • 11.3.1.1.
  • Aminocoumarins
  • 11.3.1.2.
  • Cyclothialidines
  • 11.3.1.3.
  • Kibdelomycin and Amycolamicin
  • Aminocoumarins
  • 11.3.2.
  • Recent GyrB and Dual-Targeting GyrB/ParE ATPase Inhibitors
  • 11.3.2.1.
  • Aminobenzimidazole Ureas
  • 11.3.2.2.
  • Imidazopvridines and Triazolopyridines --
  • References
  • 2.
  • Antibacterial Discovery: Problems and Possibilities
  • Lynn L. Silver
  • 2.1.
  • Introduction
  • 2.2.
  • Why Is Antibacterial Discovery Difficult? The Problems
  • Sonia Ilaria Maffioli
  • 2.3.
  • Target Choice: Essentiality
  • 2.4.
  • Target Choice: Resistance
  • 2.5.
  • Cell Entry
  • 2.6.
  • Screening Strategies
  • 2.6.1.
  • Empirical Screens
  • 1.1.
  • 2.6.2.
  • Phenotypic Whole-Cell Screens
  • 2.6.3.
  • In Vitro Screens for Single-Target Inhibitors
  • 2.6.4.
  • Chemicals to Screen
  • 2.6.4.1.
  • Chemical Collections
  • 2.7.
  • Natural Products
  • Introduction
  • 2.8.
  • Computational Chemistry, Virtual Screening, Structure- and Fragment-Based Drug Design (SBDD and FBDD)
  • 2.9.
  • Conclusions
  • References
  • 3.
  • Impact of Microbial Natural Products on Antibacterial Drug Discovery
  • Gabriella Molinari
  • 3.1.
  • Introduction
  • 1.2.
  • 3.2.
  • Natural Products for Drug Discovery
  • 3.3.
  • Microbial Natural Products
  • 3.4.
  • Challenge of Finding Novel Antibiotics from New Natural Sources
  • 3.5.
  • Workflow for Drug Discovery from Microbial Natural Products
  • 3.6.
  • Antimicrobial Activities: Targets for Screens
  • Aminoglycosides
  • 3.7.
  • Natural Products: A Continuing Source for Inspiration
  • 3.8.
  • Genome Mining in Natural Product Discovery
  • 3.9.
  • Conclusions
  • References
  • 4.
  • Antibiotics and Resistance: A Fatal Attraction
  • Anna Maria Puglia
  • Clinical Progression of ATPase Inhibitors
  • Denis Drainas
  • 14.1.
  • Introduction
  • 14.2.
  • Targeting RNase P with Antisense Strategies
  • 14.3.
  • Aminoglycosides
  • 14.4.
  • Peptidyltransferase Inhibitors
  • 14.5.
  • 11.4.
  • Substrate Masking by Synthetic Inhibitors
  • 14.6.
  • Peculiar Behavior of Macrolides on Bacterial RNase P
  • 14.7.
  • Antipsoriatic Compounds
  • 14.8.
  • Conclusions and Future Perspectives
  • References
  • 15.
  • Involvement of Ribosome Biogenesis in Antibiotic Function, Acquired Resistance, and Future Opportunities in Drug Discovery
  • Simocyclinones, Gyramides, and Other Miscellaneous Inhibitors
  • Jason P. Rife
  • 15.1.
  • Introduction
  • 15.2.
  • Ribosome Biogenesis
  • 15.3.
  • Antibiotics and Ribosome Biogenesis
  • 15.4.
  • Methyltransferases
  • 15.5.
  • 11.4.1.
  • Methyltransferase Integration into the Ribosome Biogenesis Pathway
  • 15.6.
  • Ribosome Biogenesis Factors, Virulence, and Vaccine Development
  • References
  • 16.
  • Aminoacyl-tRNA Synthetase Inhibitors
  • Thale C. Jarvis
  • 16.1.
  • Introduction
  • 16.2.
  • Simocyclinone D8
  • Enzymatic Mechanism of Action of aaRS
  • 16.2.1.
  • Condensation of Amino Acid and Cognate tRNA
  • 16.2.2.
  • Classification of aaRS
  • 16.2.3.
  • Fidelity and Proof Reading
  • 16.2.4.
  • Transamidation Pathway
  • 16.2.5.
  • 11.4.2.
  • aaRSs as Targets for Antimicrobial Agents: General Modes of Inhibition
  • 16.3.
  • aaRS Inhibitors
  • 16.3.1.
  • Mupirocin, a Paradigm
  • 16.3.2.
  • Old and New Compounds with aaRS Inhibitory Activity
  • 16.3.2.1.
  • Natural Products That Inhibit aaRS
  • 16.3.2.2.
  • Gyramides
  • AaRS Inhibitors Identified in Screening Programs
  • 16.3.3.
  • Novel aaRS Inhibitors in Clinical Development
  • 16.3.3.1.
  • CRS3123, a Fully Synthetic MetRS Inhibitor
  • 16.3.3.2.
  • AN2690 (Tavaborole) and AN3365 (GSK2251052), Boron-Containing LeuRS Inhibitors
  • 16.4.
  • Considerations for the Development of aaRS Inhibitors
  • 16.4.1.
  • 11.4.3.
  • Resistance Development
  • 16.4.2.
  • Selectivity over Eukarvotic and Mitochondrial Counterparts
  • 16.4.3.
  • Spectrum of Activity
  • 16.4.4.
  • Amino Acid Antagonism
  • 16.5.
  • Conclusions
  • References
  • Other Miscellaneous Inhibitors
  • 17.
  • Antibiotics Targeting Translation Initiation in Prokaryotes
  • Claudio O. Gualerzi
  • 17.1.
  • Introduction
  • 17.2.
  • Mechanism of Translation Initiation
  • 17.3.
  • Inhibitors of Folate Metabolism
  • 17.4.
  • 11.4.3.1.
  • Methionyl-tRNA Formyltransferase
  • 17.5.
  • Inhibitors of Peptide Deformylase
  • 17.6.
  • Inhibitors of Translation Initiation Factor IF2
  • 17.7.
  • PpGpp Analogs as Potential Translation Initiation Inhibitors
  • 17.8.
  • Translation Initiation Inhibitors Targeting the P-Site
  • References
  • Contents note continued:
  • Pyrazoles
  • 18.
  • Inhibitors of Bacterial Elongation Factor EF-Tu
  • Letizia Brandi
  • 18.1.
  • Introduction
  • 18.2.
  • Enacyloxins
  • 18.3.
  • Kirromycin
  • 18.4.
  • 11.4.3.2.
  • Pulvomycin
  • 18.5.
  • GE2270A
  • References
  • 19.
  • Aminoglycoside Antibiotics: Structural Decoding of Inhibitors Targeting the Ribosomal Decoding A Site
  • Eric Westhof
  • 19.1.
  • Introduction
  • 19.2.
  • Quercetin Derivatives
  • Chemical Structures of Aminoglycosides
  • 19.3.
  • Secondary Structures of the Target A Sites
  • 19.4.
  • Overview of the Molecular Recognition of Aminoglycosides by the Bacterial A Site
  • 19.5.
  • Role of Ring I: Specific Recognition of the Binding Pocket
  • 19.6.
  • Role of Ring II (2-DOS Ring): Locking the A-Site Switch in the "On" State
  • 19.7.
  • 11.4.3.3.
  • Dual Roles of Extra Rings: Improving the Binding Affinity and Eluding Defense Mechanisms
  • 19.8.
  • Binding of Semisynthetic Aminoglycosides to the Bacterial A Sites
  • 19.9.
  • Binding of Aminoglycosides to the Antibiotic-Resistant Bacterial Mutant and Protozoal Cytoplasmic A Sites
  • 19.10.
  • Binding of Aminoglycosides to the Human A Sites
  • 19.11.
  • Other Aminoglycosides Targeting the A Site but with Different Modes of Action
  • 19.12.
  • Macromolecular Inhibitors of DNA Binding
  • Aminoglycosides that Do Not Target the A Site
  • 19.13.
  • Nonaminoglycoside Antibiotic Targeting the A Site
  • 19.14.
  • Conclusions
  • References
  • 20.
  • Peptidyltransferase Inhibitors of the Bacterial Ribosome
  • Daniel Wilson
  • 20.1.
  • 11.5.
  • Peptide Bond Formation and Its Inhibition by Antibiotics
  • 20.2.
  • Puromycin Mimics the CCA-End of tRNAs
  • 20.3.
  • Chloramphenicols Inhibit A-tRNA Binding in an Amino-Acid-Specific Manner
  • 20.4.
  • Oxazolidinones Bind at the A-Site of the PTC
  • 20.5.
  • Lincosamide Action at the A-Site of the PTC
  • 20.6.
  • Conclusions and Perspectives
  • Blasticidin S Mimics the CCA-End of the P-tRNA at the PTC
  • 20.7.
  • Sparsomycin Prevents A-Site and Stimulates P-Site tRNA Binding
  • 20.8.
  • Pleuromutilins Overlap A- and P-Sites at the PTC
  • 20.9.
  • Synergistic Action of Streptogramins at the PTC
  • 20.10.
  • Future Perspectives
  • References
  • References
  • 21.
  • Antibiotics Inhibiting the Translocation Step of Protein Elongation on the Ribosome
  • Wolfgang Wintermeyer
  • 21.1.
  • Introduction
  • 21.2.
  • Translocation: Overview
  • 21.3.
  • Antibiotics Inhibiting Translocation
  • 21.3.1.
  • 12.
  • Target: 30S Subunit, Decoding Site
  • 21.3.2.
  • Target: 30S Body
  • 21.3.3.
  • Target: 30S Subunit, Head Domain
  • 21.3.4.
  • Target: Intersubunit Bridge 2a
  • 21.3.5.
  • Target: 50S Subunit, GTPase-Associated Center
  • 21.3.6.
  • Antibiotics Targeting Bacterial RNA Polymerase
  • Target: EF-G
  • 21.4.
  • Antibiotics Inhibiting Translocation in Eukaryotes
  • 21.4.1.
  • Target: 40S Subunit, Decoding Site
  • 21.4.2.
  • Target: 60S Subunit, E Site
  • 21.4.3.
  • Target: eEF2
  • 21.5.
  • 11.3.2.3.
  • Konstantin Brodolin
  • Antibiotics Inhibiting Ribosome Recycling in Bacteria
  • 21.5.1.
  • Target: Intersubunit Bridge 2a
  • 21.5.2.
  • Target: 50S Subunit, GTPase-Associated Center
  • 21.5.3.
  • Target: EF-G
  • 21.6.
  • Perspective
  • References
  • 12.1.
  • 22.
  • Antibiotics at the Ribosomal Exit Tunnel-Selected Structural Aspects
  • Ada Yonath
  • 22.1.
  • Introduction
  • 22.2.
  • Multifunctional Tunnel
  • 22.3.
  • Binding Pocket within the Multifunctional Tunnel
  • 22.4.
  • Introduction
  • Remotely Resistance
  • 22.5.
  • Resistance Warfare
  • 22.6.
  • Synergism
  • 22.7.
  • Pathogen and "Patients" Models
  • 22.8.
  • Conclusion and Future Considerations
  • Acknowledgments
  • 12.2.
  • References
  • 23.
  • Targeting HSP70 to Fight Cancer and Bad Bugs: One and the Same Battle?
  • Jean-Herve Alix
  • 23.1.
  • Novel Target: The Bacterial Chaperone HSP70
  • 23.2.
  • In vivo Screening for Compounds Targeting DnaK
  • 23.3.
  • Drugging HSP70
  • Antibiotics Blocking Nascent RNA Extension
  • 23.4.
  • Cooperation between the Bacterial Molecular Chaperones DnaK and HtpG
  • 23.5.
  • Drugging HSP90
  • References
  • 12.2.1.
  • Ansamycins (Rifamycins)
  • 12.2.2.
  • Sorangicin
  • 12.3.
  • Pyrrolopyrimidines and Pyrimidoindoles
  • Antibiotics Targeting RNAP Active Center
  • 12.3.1.
  • Streptolydigin and Other Acyl-Tetramic Acid Family Antibiotics
  • 12.3.2.
  • Lasso Peptides: Microcin j25 and Capistruin
  • 12.3.3.
  • CBR703 Series
  • 12.4.
  • Antibiotics Blocking Promoter Complex Formation
  • 12.4.1.
  • 11.3.2.4.
  • Myxopyronin
  • 12.4.2.
  • Corallopyronin
  • 12.4.3.
  • Ripostatin
  • 12.4.4.
  • Lipiarmycin
  • 12.5.
  • Inhibitors Hindering Ï-Core Interactions
  • 12.5.1.
  • Pyrazolthiazoles
  • SB2 and Analogs (Phenyl-Furanyl-Rodanines)
  • 12.6.
  • Inhibitors with Unknown Mechanisms and Binding Sites
  • 12.6.1.
  • GE23077
  • 12.6.2.
  • Ureidothiophene
  • 12.7.
  • Conclusions and Perspectives
  • 12.7.1.
  • 11.3.2.5.
  • Bacterial RNA Polymerase Inhibitors are a Valid Source of Clinical Drugs
  • 12.7.2.
  • Ï Subunit of RNAP Modulates Antibiotics Activity
  • References
  • 13.
  • Inhibitors Targeting Riboswitches and Ribozymes
  • Claudio O. Gualerzi
  • 13.1.
  • Introduction
  • 13.2.
  • Pyrrolamides
  • Riboswitches as Antibacterial Drug Targets
  • 13.2.1.
  • Purine Riboswitches
  • 13.2.2.
  • c-di-GMP (Bis-3'-5'-Cyclic Dimeric Guanosine Monophosphate) Riboswitch
  • 13.2.3.
  • FMN Riboswitches
  • 13.2.4.
  • Thiamine Pyrophosphate (TPP) Riboswitch
  • 13.2.5.
  • 11.3.2.6.
  • Lysine Riboswitch
  • 13.2.6.
  • SAM (S-Adenosylmethionine) Riboswitches
  • 13.3.
  • Ribozymes as Antibacterial Drug Targets
  • 13.4.
  • Concluding Remarks and Future Perspectives
  • References
  • 14.
  • Targeting Ribonuclease P
Dimensions
unknown
Extent
1 online resource.
Form of item
online
Isbn
9783527659715
Isbn Type
(electronic bk.)
Media category
computer
Media MARC source
rdamedia
Media type code
c
Reproduction note
Electronic reproduction.
Specific material designation
remote
System control number
(NhCcYBP)EBL1380171

Library Locations

  • Albert D. Cohen Management LibraryBorrow it
    181 Freedman Crescent, Winnipeg, MB, R3T 5V4, CA
    49.807878 -97.129961
  • Architecture/Fine Arts LibraryBorrow it
    84 Curry Place, Winnipeg, MB, CA
    49.807716 -97.136226
  • Archives and Special CollectionsBorrow it
    25 Chancellors Circle (Elizabeth Dafoe Library), Room 330, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Bibliothèque Alfred-Monnin (Université de Saint-Boniface)Borrow it
    200, avenue de la Cathédrale, Local 2110, Winnipeg, MB, R2H 0H7, CA
    49.888861 -97.119735
  • Bill Larson Library (Grace Hospital)Borrow it
    300 Booth Drive, G-227, Winnipeg, MB, R3J 3M7, CA
    49.882400 -97.276436
  • Carolyn Sifton - Helene Fuld Library (St. Boniface General Hospital)Borrow it
    409 Tache Avenue, Winnipeg, MB, R2H 2A6, CA
    49.883388 -97.126050
  • Concordia Hospital LibraryBorrow it
    1095 Concordia Avenue, Winnipeg, MB, R2K 3S8, CA
    49.913252 -97.064683
  • Donald W. Craik Engineering LibraryBorrow it
    75B Chancellors Circle (Engineering Building E3), Room 361, Winnipeg, MB, R3T 2N2, CA
    49.809053 -97.133292
  • E.K. Williams Law LibraryBorrow it
    224 Dysart Road, Winnipeg, MB, R3T 5V4, CA
    49.811829 -97.131017
  • Eckhardt-Gramatté Music LibraryBorrow it
    136 Dafoe Road (Taché Arts Complex), Room 257, Winnipeg, MB, R3T 2N2, CA
    49.807964 -97.132222
  • Elizabeth Dafoe LibraryBorrow it
    25 Chancellors Circle, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Fr. H. Drake Library (St. Paul's College)Borrow it
    70 Dysart Road, Winnipeg, MB, R3T 2M6, CA
    49.810605 -97.138184
  • J.W. Crane Memorial Library (Deer Lodge Centre)Borrow it
    2109 Portage Avenue, Winnipeg, MB, R3J 0L3, CA
    49.878000 -97.235520
  • Libraries Annex (not open to the public; please see web page for details)Borrow it
    25 Chancellors Circle (in the Elizabeth Dafoe Library), Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Neil John Maclean Health Sciences LibraryBorrow it
    727 McDermot Avenue (Brodie Centre), 200 Level, Winnipeg, MB, R3E 3P5, CA
    49.903563 -97.160554
  • Sciences and Technology LibraryBorrow it
    186 Dysart Road, Winnipeg, MB, R3T 2M8, CA
    49.811526 -97.133257
  • Seven Oaks General Hospital LibraryBorrow it
    2300 McPhillips Street, Winnipeg, MB, R2V 3M3, CA
    49.955177 -97.148865
  • Sister St. Odilon Library (Misericordia Health Centre)Borrow it
    99 Cornish Avenue, Winnipeg, MB, R3C 1A2, CA
    49.879592 -97.160425
  • St. John's College LibraryBorrow it
    92 Dysart Road, Winnipeg, MB, R3T 2M5, CA
    49.811242 -97.137156
  • Victoria General Hospital LibraryBorrow it
    2340 Pembina Highway, Winnipeg, MB, R3T 2E8, CA
    49.806755 -97.152739
  • William R Newman Library (Agriculture)Borrow it
    66 Dafoe Road, Winnipeg, MB, R3T 2R3, CA
    49.806936 -97.135525
Processing Feedback ...