The Resource Applied surface thermodynamics

Applied surface thermodynamics

Label
Applied surface thermodynamics
Title
Applied surface thermodynamics
Contributor
Subject
Language
eng
Member of
Cataloging source
DLC
Dewey number
541/.33
Illustrations
illustrations
Index
index present
LC call number
QC173.4.S94
LC item number
A67 2011
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/relatedWorkOrContributorDate
  • 1933-
  • 1977-
  • 1976-
http://library.link/vocab/relatedWorkOrContributorName
  • Neumann, A. W.
  • David, Robert
  • Zuo, Yi
Series statement
Surfactant science series
Series volume
151
http://library.link/vocab/subjectName
  • Surfaces (Physics)
  • Thermodynamics
  • Surface chemistry
  • Surface tension
  • Contact angle
Label
Applied surface thermodynamics
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • Fundamental Equation for Bulk Phases
  • Conclusions
  • References
  • Chapter 3.
  • Axisymmetric Drop Shape Analysis (ADSA)
  • A. Wilhelm Neumann
  • 3.1.
  • Introduction
  • 3.1.1.
  • Wilhelmy Plate and Du Nouy Ring Method
  • 3.1.2.
  • 1.1.3.
  • Drop Weight Method
  • 3.1.3.
  • Oscillating Jet Method
  • 3.1.4.
  • Capillary Wave Method
  • 3.1.5.
  • Spinning Drop Method
  • 3.1.6.
  • Drop Shape Techniques
  • 3.2.
  • Generalization of the Classical Thermodynamics of Surfaces
  • Laplace Equation of Capillarity
  • 3.3.
  • Axisymmetric Drop Shape Analysis; Profile (ADSA-P)
  • 3.3.1.
  • Numerical Procedure
  • 3.3.1.1.
  • Integration of the Laplace Equation
  • 3.31.2.
  • Error Estimation and Formation of the Objective Function
  • 3.3.1.3.
  • 1.1.4.
  • Optimization Procedure: Newton's Method
  • 3.3.2.
  • Generation of Laplacian Curves Using ALFI
  • 3.3.3.
  • Comparison of Two ADSA-P Algorithms
  • 3.3.4.
  • ADSA-P Setup
  • 3.3.4.1.
  • Light Source
  • 3.3.4.2.
  • Extension to Three-Phase Linear Systems
  • Microscope Lens
  • 3.3.4.3.
  • Camera
  • 3.3.5.
  • ADSA-P Image Processing
  • 3.3.6.
  • Shape Parameter
  • 3.3.6.1.
  • Critical Shape Parameter
  • 3.3.6.2.
  • 1.1.5.
  • Effect of the Material, Size, and Shape of the Holder on the Critical Shape Parameter
  • 3.3.6.3.
  • Effect of Liquid Properties on the Critical Shape Parameter
  • 3.3.6.4.
  • Impact of Dynamic Effects on the Critical Shape Parameter
  • 3.3.6.5.
  • Shape Parameter of Constrained Sessile Drops
  • 3.3.6.6.
  • Evaluation of the Numerical Schemes of ADSA-P Using Shape Parameter
  • 3.3.7.
  • Mechanical Equilibrium Conditions
  • Application of ADSA-P
  • 3.3.7.1.
  • Contact Angle Measurement
  • 3.3.7.2.
  • Pressure Dependence of Interfacial Tensions
  • 3.3.7.3.
  • Ultralow Liquid-Liquid Interfacial Tensions
  • 3.3.7.4.
  • ADSA-P as a Film Balance
  • 3.3.7.5.
  • 1.1.6.
  • Simulataneous Determination of Surface Tension and Density of Polymer Melts
  • 3.3.7.6.
  • Tissue Surface Tension
  • References
  • Chapter 4.
  • Image Analysis for Axisymmetric Drop Shape Analysis
  • A. Wilhelm Neumann
  • 4.1.
  • Introduction
  • 4.2.
  • Free Energy Variation and Alternative Curvature Measures
  • Fundamentals of Image Analysis
  • 4.2.1.
  • Thresholding
  • 4.2.2.
  • Derivative Edge Operators
  • 4.2.3.
  • Advanced Edge Detectors Robust Against Noise
  • 4.3.
  • Image Analysis for Surface Tension Measurement Using ADSA-P
  • 4.3.1.
  • 1.2.
  • Development of the Image Analysis Scheme
  • 4.3.1.1.
  • Edge Detection
  • 4.3.1.2.
  • Edge Smoothing
  • 4.3.1.3.
  • Edge Restoration
  • 4.3.1.4.
  • Edge Selection
  • 4.3.2.
  • Chapter 1.
  • Applications, Implications, and Corollaries
  • Evaluation of the Image Analysis Scheme
  • 4.3.2.1.
  • Dependence of the User-Specified Parameters
  • 4.3.2.2.
  • Analysis of Sample Images
  • 4.3.2.3.
  • Experimental Validation
  • 4.3.2.4.
  • Automatic Validation
  • 4.3.3.
  • 1.2.1.
  • Further Development in Noise Reduction
  • 4.4.
  • Image Analysis for Contact Angle Measurement Using ADSA-D
  • 4.4.1.
  • Development of the Image Analysis Scheme
  • 4.4.1.1.
  • Noise Reduction
  • 4.4.1.2.
  • Edge Detection
  • 4.4.1.3.
  • Introduction
  • Area Detection
  • 4.4.2.
  • Evaluation of the Image Analysis Scheme
  • 4.5.
  • Concluding Remarks
  • References
  • Chapter 5.
  • Generalization and Advanced Application of Axisymmetric Drop Shape Analysis
  • A. Wilhelm Neumann
  • 5.1.
  • 1.2.2.
  • Introduction
  • 5.2.
  • ADSA for Lung Surfactant Studies
  • 5.2.1.
  • Introduction
  • 5.2.2.
  • Experimental Setup
  • 5.2.3.
  • Different Drop/Bubble Configurations
  • 5.2.3.1.
  • Free Energy Representation
  • Pendant Drop
  • 5.2.3.2.
  • Captive Bubble
  • 5.2.3.3.
  • Constrained Sessile Drop
  • 5.2.4.
  • Typical Applications
  • 5.2.4.1.
  • Study of Adsorption Kinetics Using a Pendant Drop
  • 5.2.4.2.
  • 1.2.3.
  • Study of Film Stability and Compressiblity Using a Captive Bubble
  • 5.2.4.3.
  • Study of High Surfactant Concentration Using a Constrained Sessile Drop
  • 5.2.4.4.
  • ADSA Studies Beyond Surface Tension: Gas Transfer Through Interfacial Films
  • 5.3.
  • ADSA as a Miniaturized Langmuir Film Balance
  • 5.3.1.
  • Introduction
  • 5.3.2.
  • Simple Derivation of the Generalized Laplace Equation
  • Experimental Setup
  • 5.3.3.
  • Typical Applications
  • 5.3.3.1.
  • Adsorbed Protein Monolayers
  • 5.3.3.2.
  • Surface Interaction of Proteins and Surfactants
  • 5.3.3.3.
  • Interfacial Hydrolysis
  • 5.4.
  • 1.2.4.
  • ADSA for Electric Fields (ADSA-EF)
  • 5.4.1.
  • Introduction
  • 5.4.2.
  • Constained Sessile Drop Configuration for Electric Fields
  • 5.4.3.
  • Electric Field Module
  • 5.4.3.1.
  • Mathematical Formulation
  • 5.4.3.2.
  • Direct Derivation of the Generalized Laplace Equation
  • Numerical Scheme
  • 5.4.3.3.
  • Modeling the Geometry
  • 5.4.3.4.
  • Discretization of the Domain
  • 5.4.3.5.
  • Electric Field Calculation
  • 5.4.3.6.
  • Evaluation and Tuning of the Electric Field Module
  • 5.4.4.
  • 1.2.5.
  • Drop-Shape Module
  • 5.4.5.
  • Development of an Automated Optimization Scheme
  • 5.4.6.
  • Experiments and Results
  • 5.4.6.1.
  • Experimental Procedure
  • 5.4.6.2.
  • Experimental Results
  • 5.5.
  • Outline of the Generalized Theory of Capillarity
  • Hydrostatic Approach to Capillarity
  • Alternative to ADSA: Theoretical Image Fitting Analysis (TIFA)
  • 5.5.1.
  • Introduction
  • 5.5.2.
  • Formulation of the Objective Function
  • 5.5.3.
  • TIFA for Drops and Bubbles
  • 5.5.4.
  • TIFA for Axisymmetric Interfaces Without Apex
  • 5.5.5.
  • 1.2.6.
  • TIFA for Liquid Lenses
  • References
  • Chapter 6.
  • Contact Angle Measurements: General Procedures and Approaches
  • Hossein Tavana
  • 6.1.
  • Introduction
  • 6.2.
  • Measurement of Contact Angles: Conventional Techniques
  • 6.3.
  • Hydrostatic Derivation of the Generalized Laplace Equation
  • Measurement of Contact Angles: New Techniques
  • 6.3.1.
  • Axisymmetric Drop Shape Analysis-Profile (ADSA-P)
  • 6.3.2.
  • Applications of ADSA-P for Contact Angle Measurement
  • 6.3.2.1.
  • Static Contact Angles (θ stat)
  • 6.3.2.2.
  • Dynamic Advancing (θ a) and Receding (θ r) Contact Angles
  • 6.3.2.3.
  • 1.2.7.
  • Time-Dependent Contact Angles
  • 6.3.2.4.
  • Rate Dependence of Contact Angles --
  • Invariance of the Free Energy Against Shifts of the Dividing Surface
  • 1.2.8.
  • Summary and Conclusions
  • References
  • Chapter 2.
  • Thermodynamics of Simple Axisymmetric Capillary Systems
  • A. Wilhelm Neumann
  • A. Wilhelm Neumann
  • 2.1.
  • Mechanics of Axisymmetric Incompressible Equilibrium Systems
  • 2.1.1.
  • Solid-Liquid-Fluid System
  • 2.1.2.
  • Principle of Virtual Work
  • 2.1.3.
  • Free Energy Expressions for the Bulk Regions
  • 2.1.4.
  • 1.1.
  • External Body Forces
  • 2.1.5.
  • Free Energy Expressions for the Surface and Line Regions
  • 2.1.6.
  • Variational Problem
  • 2.1.7.
  • Mechanical Equilibrium Conditions
  • 2.1.8.
  • Mechanical Equilibrium Conditions for Moderately Curved Boundaries
  • 2.1.9.
  • Outline of the Generalized Theory of Capillarity
  • Interpretation of the Surface Boundary Condition
  • 2.1.10.
  • Interpretation of the Contact Line Boundary Condition
  • 2.1.11.
  • Nonmoderately Curved Boundaries
  • 2.2.
  • Neumann Triangle (Quadrilateral) Relation
  • 2.2.1.
  • Solid-Liquid-Liquid-Fluid System
  • 2.2.2.
  • 1.1.1.
  • Free Energy Expressions for the Bulk Regions
  • 2.2.3.
  • External Body Forces
  • 2.2.4.
  • Free Energy Expressions for the Surface and Line Regions
  • 2.2.5.
  • Constraints
  • 2.2.6.
  • Variational Problem
  • 2.2.7.
  • Introduction
  • Classical Mechanical Equilibrium Conditions
  • 2.2.8.
  • Alternative Expression for the Neumann Triangle Relation
  • 2.3.
  • Mechanics of Axisymmetric Compressible Equilibrium Systems
  • 2.3.1.
  • Free Energy Expressions for the Bulk, Surface, and Line Regions
  • 2.3.2.
  • Compressible System Constraints
  • 2.3.3.
  • 1.1.2.
  • Variational Problem
  • 2.3.4.
  • Bulk Mass Only Solution
  • 2.3.5.
  • Mechanical Equilibrium Conditions for the Bulk Mass Only Solution
  • 2.3.6.
  • Mechanical Equilibrium Conditions for the Case of Constant Phase Density
  • 2.3.7.
  • Interpretation of the Compressible Mechanical Equilibrium Conditions
  • 2.4.
  • 6.3.3.3.
  • 7.3.2.
  • Dynamic Cycling Contact Angle (DCCA)
  • 7.3.3.
  • Contact Angle Hysteresis for Liquids with Bulky Molecules
  • 7.3.4.
  • Size of N-Alkane Molecules and Contact Angle Hysteresis
  • 7.3.5.
  • Rate of Motion of the Three-Phase Contact Line and Contact Angle Hysteresis
  • 7.3.6.
  • Effect of a Thin Liquid Film on Contact Angle Hysteresis
  • Experimental Evaluation of ADSA-D Accuracy
  • 7.4.
  • Further Thermodynamic Consideration of Thin Film Phenomena
  • 7.4.1.
  • Number of Degrees of Freedom
  • 7.4.2.
  • Equation of State Approach to Evaluate Film Tension
  • 7.5.
  • Stick-Slip of the Three-Phase Contact Line in Measurements of Dynamic Contact Angles
  • 7.5.1.
  • Connection Between Stick-Slip and Vapor Adsorption Onto ODMF Films
  • 6.3.3.4.
  • 7.6.
  • Phenomenological Contact Angles: Contact Angles on Superhydrophobic Surfaces
  • 7.7.
  • Contact Angles in the Presence of Electric Double Layers
  • 7.8.
  • Glossary of Contact Angle Concepts
  • References
  • Chapter 8.
  • Interpretation of Contact Angles
  • A. Wilhelm Neumann
  • Applications of ADSA-D
  • 8.1.
  • Introduction
  • 8.2.
  • Contact Angle Measurements
  • 8.3.
  • General Contact Angle Patterns
  • 8.4.
  • Contact Angle Deviations from Smooth Curves of γ iv cosθ Versus γ iv
  • 8.5.
  • Reproducibility of Contact Angle Measurements
  • 6.3.4.
  • 8.5.1.
  • Contact Anles and Film Thickness
  • 8.5.2.
  • Contact Angles and Film Preparation Techniques
  • 8.5.3.
  • Reproducibility of Contact Angles of n-Alkanes
  • 8.6.
  • Identification of the Causes of Contact Angle Deviations on Fluoropolymer Surfaces
  • 8.6.1.
  • Geometrical Properties of Liquid Molecules
  • Automated Polynomial Fitting (APF) Methodology
  • 8.6.2.
  • Interpretation of Contact Angles of Liquids Consisting of Bulky Molecules
  • 8.6.2.1.
  • Liquids with Bulky Molecules/Teflon AF 1600 Systems
  • 8.6.2.2.
  • Liquid with Bulky Molecules/EGC-1700 Systems
  • 8.6.2.3.
  • Liquid with Bulky Molecules/ETMF Systems
  • 8.6.2.4.
  • Liquid with Bulky Molecules/ODMF Systems
  • 6.4.
  • 8.6.3.
  • Interpretation of Contact Angles of a Homologous Series of n-Alkanes
  • 8.6.3.1.
  • n-Alkanes/Teflon AF 1600 Systems
  • 8.6.3.2.
  • n-Alkanes/EGC-1700 Systems
  • 8.6.3.3.
  • n-Alkanes/ETMF Systems
  • 8.6.3.4.
  • n-Alkanes/ODMF Systems
  • Temperature Dependence of Contact Angles
  • 8.6.4.
  • Contact Angle Deviations Due to Strong Molecular Interactions at the Solid-Liquid Interface
  • 8.6.5.
  • Inertness of Probe Liquids with Respect to a Solid
  • 8.7.
  • Contact Angle Deviations on Self-Assembled Monolayers (SAMs)
  • 8.8.
  • Impact of Recent Work on Applicability of the Equation of State
  • 8.9.
  • Summary of the Physical Causes of Deviations from the Smooth Curves
  • 6.5.
  • 8.10.
  • Thermodynamic Status of Experimental Contact Angles and Applicability of the Equation of State
  • References
  • Chapter 9.
  • Contact Angles and Solid Surface Tensions
  • Daniel Kwok
  • 9.1.
  • Introduction
  • 9.1.1.
  • Zisman
  • Solid Surface Preparation Techniques
  • 9.2.
  • Surface Tension Component Approaches
  • 9.2.1.
  • Fowkes
  • 9.2.2.
  • Van Oss
  • 9.3.
  • Existence of an Equation of State
  • 9.3.1.
  • Introduction
  • 6.3.2.5.
  • 6.5.1.
  • 9.3.2.
  • Good's Interaction Parameter
  • 9.3.3.
  • Contact Angle Data
  • 9.3.4.
  • Interfacial Gibbs-Duhem Equations
  • 9.3.5.
  • Phase Rule for Interfacial Systems
  • 9.4.
  • Formulation of an Equation of State
  • Nonbiological Materials
  • 9.4.1.
  • Role of Adsorption
  • 9.4.2.
  • Equation of State: Original Formulation
  • 9.4.3.
  • Equation of State: Alternate Formulation
  • 9.4.4.
  • Possibility of Negative Solid-Liquid Interfacial Tensions
  • 9.5.
  • Experimental Data
  • 6.5.1.1.
  • 9.5.1.
  • Direct Force Measurements
  • 9.5.2.
  • Solidification Fronts
  • 9.5.3.
  • Sedimentation Volumes
  • 9.5.4.
  • Particle Suspension Layer Stability
  • 9.5.5.
  • Temperature Dependence of Contact Angles
  • Heat Pressing
  • 9.5.6.
  • Consistency of Solid Surface Tensions
  • 9.5.7.
  • Contact Angles of Polar and Nonpolar Liquids
  • 9.6.
  • Intermolecular Theory
  • 9.6.1.
  • Calculation of Interfacial Tensions and Contact Angles
  • 9.6.2.
  • Combining Rules for Solid-Liquid Interfacial Tensions
  • 6.5.1.2.
  • 9.6.3.
  • Calculated Adhesion and Contact Angle Patterns
  • 9.6.4.
  • Lifshitz Theory
  • References
  • Chapter 10.
  • Theoretical Approaches for Estimating Solid-Liquid Interfacial Tensions
  • A. Wilhelm Neumann
  • 10.1.
  • Introduction
  • Solvent Casting
  • 10.2.
  • Contact Angle Interpretion
  • 10.3.
  • Gibbs-Thomson Equation
  • 10.3.1.
  • Indirect Approaches: Homogeneous Nucleation and Melting in Pores
  • 10.3.2.
  • Direct Approaches: Skapski's Method and Analysis of Grain Boundary Grooves
  • 10.3.3.
  • Theoretical Estimations of Solid-Liquid Interfacial Tension Values
  • 6.5.1.3.
  • 10.4.
  • Theoretical Estimations of Solid-Liquid Interfacial Tensions
  • 10.4.1.
  • Microscopic Approach to Interfaces: Gradient Theory
  • 10.4.2.
  • Lifshitz Theory of van der Waals Forces
  • 10.4.3.
  • Results and Discussion
  • 10.5.
  • Difficiencies of the Gibbs-Thomson Equation
  • Dip Casting
  • 10.5.1.
  • Surface Stress and Surface Tension
  • 10.5.2.
  • Grain Boundary Energy and Solid-Melt Interfacial Tensions
  • 10.6.
  • Conclusions
  • References
  • Chapter 11.
  • Wettability and Surface Tension of Particles
  • A. Wilhelm Neumann
  • 6.5.1.4.
  • 11.1.
  • Introduction
  • 11.2.
  • Qualitative Approaches
  • 11.2.1.
  • Liquid-Liquid Contact Angle Measurement
  • 11.2.2.
  • Two-Phase Partition Methods
  • 11.2.3.
  • Hydrophobic Interaction Chromatography
  • Langmuir-Blodgett Film Deposition
  • 11.2.4.
  • Salting-Out Aggregation Test
  • 11.3.
  • Quantitative Approaches
  • 11.3.1.
  • Direct Contact Angle Measurements
  • 11.3.2.
  • Heat of Immersion
  • 11.3.3.
  • Film Flotation
  • Small and Extremely Large Contact Angles
  • 6.5.1.5.
  • 11.3.4.
  • Sedimentation Volume
  • 11.3.4.1.
  • Theory
  • 11.3.4.2.
  • Sedimentation of Polymer Particles in Binary Liquid Mixtures
  • 11.3.4.3.
  • Sedimentation Behavior in Single-Component Liquids and in Binary Liquid Mixtures --
  • Self-Assembled Monolayers
  • 6.5.1.6.
  • Vapor and Molecular Deposition Techniques
  • 6.5.1.7.
  • Siliconization
  • 6.5.1.8.
  • Surface Polishing
  • 6.5.1.9.
  • Preparation of Powders for Contact Angle Measurements
  • 6.3.3.
  • 6.5.2.
  • Biological Materials
  • 6.5.2.1.
  • Teeth and Skin
  • 6.5.2.2.
  • Bacteria, Cells, Proteins, and Liposomes
  • 6.5.2.3.
  • Hydrogels
  • 6.5.3.
  • Cleaning and Handling Solid Surfaces
  • ADSA-D for Measurement of Small Contact Angles and Contact Angles on Nonideal Surfaces
  • References
  • Chapter 7.
  • Thermodynamic Status of Contact Angles
  • Hossein Tavana
  • 7.1.
  • Introduction
  • 7.2.
  • Thermodynamic Modeling and Free Energy Analysis of Solid-Liquid-Fluid Systems
  • 7.2.1.
  • Vertical Plate Model
  • 6.3.3.1.
  • 7.2.1.1.
  • Driving Force Term, Δ F1
  • 7.2.1.2.
  • Free Energy Change of the Liquid-Vapor Interface, Δ F2
  • 7.2.1.3.
  • Work Done Against Gravity, Δ F3
  • 7.2.2.
  • Contact Angles on a Smooth but Heterogeneous Surface Consisting of Horizontal Strips
  • 7.2.3.
  • Contact Angles on a Smooth but Heterogeneous Surface Consisting of Vertical Strips
  • Numerical Procedure
  • 7.2.4.
  • Contact Angles on Homogeneous but Rough Surfaces
  • 7.2.4.1.
  • Driving Force Term, Δ F1
  • 7.2.4.2.
  • Free Energy Change of the Liquid---Vapor Interface, Δ F2
  • 7.2.4.3.
  • Work Done Against Gravity, Δ F3
  • 7.2.4.4.
  • Application to Idealized Rough Surfaces
  • 6.3.3.2.
  • 7.2.5.
  • Flotation of Cylindrical Particles at Liquid-Fluid Interfaces
  • 7.2.5.1.
  • Driving Potential, Δ F1
  • 7.2.5.2.
  • Work to Alter Interface 23, Δ F2
  • 7.2.5.3.
  • Work Done Against Gravity (On the Liquid), Δ F3
  • 7.2.5.4.
  • Work Done Against Gravity (on the Particle), Δ F4
  • ADSA-D Setup
  • 7.2.6.
  • Contact Angle Phenomena in the Presence of a Thin Liquid Film
  • 7.2.6.1.
  • Thermodynamic Model
  • 7.2.6.2.
  • Mechanical Equilibrium Conditions
  • 7.3.
  • Contact Angle Hysteresis Phenomena: Overview and Current View
  • 7.3.1.
  • Interpretation of Time-Dependent Receding Angles
  • Behavior of Particles at Solidification Fronts
  • A. Wilhelm Neumann
  • 12.1.
  • Introduction
  • 12.2.
  • Review of Theoretical Models
  • 12.2.1.
  • Critical Velocity for Particle Engulfment
  • 12.2.2.
  • Available Theoretical Models
  • 11.3.5.
  • 12.3.
  • Experimental
  • 12.3.1.
  • Experimental Setup
  • 12.3.2.
  • Matrix Materials
  • 12.3.3.
  • Experiments
  • 12.4.
  • Thermodynamic Interpretation
  • Capillary Penetration
  • 12.5.
  • Critical Velocity and Dimensional Analysis
  • 12.6.
  • Determination of Particle or Solid Surface Tensions from the Critical Velocity
  • 12.7.
  • Application of Solidification Front Technique to Determine Particle Surface Tensions
  • 12.7.1.
  • Surface Tensions of Fibers
  • 12.7.2.
  • Surface Tensions of Biological Cells
  • 11.3.5.1.
  • 12.7.3.
  • Surface Tensions of Coal Particles
  • 12.8.
  • Microscopic Interpretation of Particle-Front Interactions
  • 12.8.1.
  • Particle-Front Behavior in View of van der Waals Interactions
  • 12.8.2.
  • Determination of Repulsive Forces and Critical Separation Distances for Particle Engulfment
  • References
  • Chapter 13.
  • Theory
  • Line Tension and the Drop Size Dependence of Contact Angles
  • A. Wilhelm Neumann
  • 13.1.
  • Introduction
  • 13.1.1.
  • Applications
  • 13.1.2.
  • Size Dependence of Contact Angles
  • 13.2.
  • Theory
  • 11.3.5.2.
  • 13.2.1.
  • Density Functional Theory
  • 13.2.2.
  • Interface Displacement Model
  • 13.2.3.
  • Molecular Dynamics
  • 13.3.
  • Measurement
  • 13.3.1.
  • Liquid-Liquid Systems
  • Experiments
  • 13.3.2.
  • Liquid-Solid Systems
  • 13.3.2.1.
  • Millimeter Scale
  • 13.3.2.2.
  • Submillimeter Scale
  • 13.3.2.3.
  • Micrometer Scale
  • 13.3.2.4.
  • Alternative Methods
  • References
  • 13.3.3.
  • Striped Surfaces
  • 13.3.3.1.
  • Zero Line Tension
  • 13.3.3.2.
  • Nonzero Line Tension
  • 13.4.
  • Discussion
  • 13.4.1.
  • Solid Surface Heterogeneity
  • Chapter 12.
  • 13.4.2.
  • Sign of Line Tension
  • 13.4.3.
  • Conclusions
  • References
Dimensions
24 cm.
Edition
  • 2nd ed. /
  • edited by: A. Wilhelm Neumann, Robert David, Yi Zuo.
Extent
xxii, 743 p.
Isbn
9780849396878
Isbn Type
(hardcover : alk. paper)
Lccn
2010028241
Other physical details
ill.
System control number
  • (CaMWU)u2150840-01umb_inst
  • 2247313
  • (Sirsi) i9780849396878
  • (OCoLC)144565646
Label
Applied surface thermodynamics
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • Fundamental Equation for Bulk Phases
  • Conclusions
  • References
  • Chapter 3.
  • Axisymmetric Drop Shape Analysis (ADSA)
  • A. Wilhelm Neumann
  • 3.1.
  • Introduction
  • 3.1.1.
  • Wilhelmy Plate and Du Nouy Ring Method
  • 3.1.2.
  • 1.1.3.
  • Drop Weight Method
  • 3.1.3.
  • Oscillating Jet Method
  • 3.1.4.
  • Capillary Wave Method
  • 3.1.5.
  • Spinning Drop Method
  • 3.1.6.
  • Drop Shape Techniques
  • 3.2.
  • Generalization of the Classical Thermodynamics of Surfaces
  • Laplace Equation of Capillarity
  • 3.3.
  • Axisymmetric Drop Shape Analysis; Profile (ADSA-P)
  • 3.3.1.
  • Numerical Procedure
  • 3.3.1.1.
  • Integration of the Laplace Equation
  • 3.31.2.
  • Error Estimation and Formation of the Objective Function
  • 3.3.1.3.
  • 1.1.4.
  • Optimization Procedure: Newton's Method
  • 3.3.2.
  • Generation of Laplacian Curves Using ALFI
  • 3.3.3.
  • Comparison of Two ADSA-P Algorithms
  • 3.3.4.
  • ADSA-P Setup
  • 3.3.4.1.
  • Light Source
  • 3.3.4.2.
  • Extension to Three-Phase Linear Systems
  • Microscope Lens
  • 3.3.4.3.
  • Camera
  • 3.3.5.
  • ADSA-P Image Processing
  • 3.3.6.
  • Shape Parameter
  • 3.3.6.1.
  • Critical Shape Parameter
  • 3.3.6.2.
  • 1.1.5.
  • Effect of the Material, Size, and Shape of the Holder on the Critical Shape Parameter
  • 3.3.6.3.
  • Effect of Liquid Properties on the Critical Shape Parameter
  • 3.3.6.4.
  • Impact of Dynamic Effects on the Critical Shape Parameter
  • 3.3.6.5.
  • Shape Parameter of Constrained Sessile Drops
  • 3.3.6.6.
  • Evaluation of the Numerical Schemes of ADSA-P Using Shape Parameter
  • 3.3.7.
  • Mechanical Equilibrium Conditions
  • Application of ADSA-P
  • 3.3.7.1.
  • Contact Angle Measurement
  • 3.3.7.2.
  • Pressure Dependence of Interfacial Tensions
  • 3.3.7.3.
  • Ultralow Liquid-Liquid Interfacial Tensions
  • 3.3.7.4.
  • ADSA-P as a Film Balance
  • 3.3.7.5.
  • 1.1.6.
  • Simulataneous Determination of Surface Tension and Density of Polymer Melts
  • 3.3.7.6.
  • Tissue Surface Tension
  • References
  • Chapter 4.
  • Image Analysis for Axisymmetric Drop Shape Analysis
  • A. Wilhelm Neumann
  • 4.1.
  • Introduction
  • 4.2.
  • Free Energy Variation and Alternative Curvature Measures
  • Fundamentals of Image Analysis
  • 4.2.1.
  • Thresholding
  • 4.2.2.
  • Derivative Edge Operators
  • 4.2.3.
  • Advanced Edge Detectors Robust Against Noise
  • 4.3.
  • Image Analysis for Surface Tension Measurement Using ADSA-P
  • 4.3.1.
  • 1.2.
  • Development of the Image Analysis Scheme
  • 4.3.1.1.
  • Edge Detection
  • 4.3.1.2.
  • Edge Smoothing
  • 4.3.1.3.
  • Edge Restoration
  • 4.3.1.4.
  • Edge Selection
  • 4.3.2.
  • Chapter 1.
  • Applications, Implications, and Corollaries
  • Evaluation of the Image Analysis Scheme
  • 4.3.2.1.
  • Dependence of the User-Specified Parameters
  • 4.3.2.2.
  • Analysis of Sample Images
  • 4.3.2.3.
  • Experimental Validation
  • 4.3.2.4.
  • Automatic Validation
  • 4.3.3.
  • 1.2.1.
  • Further Development in Noise Reduction
  • 4.4.
  • Image Analysis for Contact Angle Measurement Using ADSA-D
  • 4.4.1.
  • Development of the Image Analysis Scheme
  • 4.4.1.1.
  • Noise Reduction
  • 4.4.1.2.
  • Edge Detection
  • 4.4.1.3.
  • Introduction
  • Area Detection
  • 4.4.2.
  • Evaluation of the Image Analysis Scheme
  • 4.5.
  • Concluding Remarks
  • References
  • Chapter 5.
  • Generalization and Advanced Application of Axisymmetric Drop Shape Analysis
  • A. Wilhelm Neumann
  • 5.1.
  • 1.2.2.
  • Introduction
  • 5.2.
  • ADSA for Lung Surfactant Studies
  • 5.2.1.
  • Introduction
  • 5.2.2.
  • Experimental Setup
  • 5.2.3.
  • Different Drop/Bubble Configurations
  • 5.2.3.1.
  • Free Energy Representation
  • Pendant Drop
  • 5.2.3.2.
  • Captive Bubble
  • 5.2.3.3.
  • Constrained Sessile Drop
  • 5.2.4.
  • Typical Applications
  • 5.2.4.1.
  • Study of Adsorption Kinetics Using a Pendant Drop
  • 5.2.4.2.
  • 1.2.3.
  • Study of Film Stability and Compressiblity Using a Captive Bubble
  • 5.2.4.3.
  • Study of High Surfactant Concentration Using a Constrained Sessile Drop
  • 5.2.4.4.
  • ADSA Studies Beyond Surface Tension: Gas Transfer Through Interfacial Films
  • 5.3.
  • ADSA as a Miniaturized Langmuir Film Balance
  • 5.3.1.
  • Introduction
  • 5.3.2.
  • Simple Derivation of the Generalized Laplace Equation
  • Experimental Setup
  • 5.3.3.
  • Typical Applications
  • 5.3.3.1.
  • Adsorbed Protein Monolayers
  • 5.3.3.2.
  • Surface Interaction of Proteins and Surfactants
  • 5.3.3.3.
  • Interfacial Hydrolysis
  • 5.4.
  • 1.2.4.
  • ADSA for Electric Fields (ADSA-EF)
  • 5.4.1.
  • Introduction
  • 5.4.2.
  • Constained Sessile Drop Configuration for Electric Fields
  • 5.4.3.
  • Electric Field Module
  • 5.4.3.1.
  • Mathematical Formulation
  • 5.4.3.2.
  • Direct Derivation of the Generalized Laplace Equation
  • Numerical Scheme
  • 5.4.3.3.
  • Modeling the Geometry
  • 5.4.3.4.
  • Discretization of the Domain
  • 5.4.3.5.
  • Electric Field Calculation
  • 5.4.3.6.
  • Evaluation and Tuning of the Electric Field Module
  • 5.4.4.
  • 1.2.5.
  • Drop-Shape Module
  • 5.4.5.
  • Development of an Automated Optimization Scheme
  • 5.4.6.
  • Experiments and Results
  • 5.4.6.1.
  • Experimental Procedure
  • 5.4.6.2.
  • Experimental Results
  • 5.5.
  • Outline of the Generalized Theory of Capillarity
  • Hydrostatic Approach to Capillarity
  • Alternative to ADSA: Theoretical Image Fitting Analysis (TIFA)
  • 5.5.1.
  • Introduction
  • 5.5.2.
  • Formulation of the Objective Function
  • 5.5.3.
  • TIFA for Drops and Bubbles
  • 5.5.4.
  • TIFA for Axisymmetric Interfaces Without Apex
  • 5.5.5.
  • 1.2.6.
  • TIFA for Liquid Lenses
  • References
  • Chapter 6.
  • Contact Angle Measurements: General Procedures and Approaches
  • Hossein Tavana
  • 6.1.
  • Introduction
  • 6.2.
  • Measurement of Contact Angles: Conventional Techniques
  • 6.3.
  • Hydrostatic Derivation of the Generalized Laplace Equation
  • Measurement of Contact Angles: New Techniques
  • 6.3.1.
  • Axisymmetric Drop Shape Analysis-Profile (ADSA-P)
  • 6.3.2.
  • Applications of ADSA-P for Contact Angle Measurement
  • 6.3.2.1.
  • Static Contact Angles (θ stat)
  • 6.3.2.2.
  • Dynamic Advancing (θ a) and Receding (θ r) Contact Angles
  • 6.3.2.3.
  • 1.2.7.
  • Time-Dependent Contact Angles
  • 6.3.2.4.
  • Rate Dependence of Contact Angles --
  • Invariance of the Free Energy Against Shifts of the Dividing Surface
  • 1.2.8.
  • Summary and Conclusions
  • References
  • Chapter 2.
  • Thermodynamics of Simple Axisymmetric Capillary Systems
  • A. Wilhelm Neumann
  • A. Wilhelm Neumann
  • 2.1.
  • Mechanics of Axisymmetric Incompressible Equilibrium Systems
  • 2.1.1.
  • Solid-Liquid-Fluid System
  • 2.1.2.
  • Principle of Virtual Work
  • 2.1.3.
  • Free Energy Expressions for the Bulk Regions
  • 2.1.4.
  • 1.1.
  • External Body Forces
  • 2.1.5.
  • Free Energy Expressions for the Surface and Line Regions
  • 2.1.6.
  • Variational Problem
  • 2.1.7.
  • Mechanical Equilibrium Conditions
  • 2.1.8.
  • Mechanical Equilibrium Conditions for Moderately Curved Boundaries
  • 2.1.9.
  • Outline of the Generalized Theory of Capillarity
  • Interpretation of the Surface Boundary Condition
  • 2.1.10.
  • Interpretation of the Contact Line Boundary Condition
  • 2.1.11.
  • Nonmoderately Curved Boundaries
  • 2.2.
  • Neumann Triangle (Quadrilateral) Relation
  • 2.2.1.
  • Solid-Liquid-Liquid-Fluid System
  • 2.2.2.
  • 1.1.1.
  • Free Energy Expressions for the Bulk Regions
  • 2.2.3.
  • External Body Forces
  • 2.2.4.
  • Free Energy Expressions for the Surface and Line Regions
  • 2.2.5.
  • Constraints
  • 2.2.6.
  • Variational Problem
  • 2.2.7.
  • Introduction
  • Classical Mechanical Equilibrium Conditions
  • 2.2.8.
  • Alternative Expression for the Neumann Triangle Relation
  • 2.3.
  • Mechanics of Axisymmetric Compressible Equilibrium Systems
  • 2.3.1.
  • Free Energy Expressions for the Bulk, Surface, and Line Regions
  • 2.3.2.
  • Compressible System Constraints
  • 2.3.3.
  • 1.1.2.
  • Variational Problem
  • 2.3.4.
  • Bulk Mass Only Solution
  • 2.3.5.
  • Mechanical Equilibrium Conditions for the Bulk Mass Only Solution
  • 2.3.6.
  • Mechanical Equilibrium Conditions for the Case of Constant Phase Density
  • 2.3.7.
  • Interpretation of the Compressible Mechanical Equilibrium Conditions
  • 2.4.
  • 6.3.3.3.
  • 7.3.2.
  • Dynamic Cycling Contact Angle (DCCA)
  • 7.3.3.
  • Contact Angle Hysteresis for Liquids with Bulky Molecules
  • 7.3.4.
  • Size of N-Alkane Molecules and Contact Angle Hysteresis
  • 7.3.5.
  • Rate of Motion of the Three-Phase Contact Line and Contact Angle Hysteresis
  • 7.3.6.
  • Effect of a Thin Liquid Film on Contact Angle Hysteresis
  • Experimental Evaluation of ADSA-D Accuracy
  • 7.4.
  • Further Thermodynamic Consideration of Thin Film Phenomena
  • 7.4.1.
  • Number of Degrees of Freedom
  • 7.4.2.
  • Equation of State Approach to Evaluate Film Tension
  • 7.5.
  • Stick-Slip of the Three-Phase Contact Line in Measurements of Dynamic Contact Angles
  • 7.5.1.
  • Connection Between Stick-Slip and Vapor Adsorption Onto ODMF Films
  • 6.3.3.4.
  • 7.6.
  • Phenomenological Contact Angles: Contact Angles on Superhydrophobic Surfaces
  • 7.7.
  • Contact Angles in the Presence of Electric Double Layers
  • 7.8.
  • Glossary of Contact Angle Concepts
  • References
  • Chapter 8.
  • Interpretation of Contact Angles
  • A. Wilhelm Neumann
  • Applications of ADSA-D
  • 8.1.
  • Introduction
  • 8.2.
  • Contact Angle Measurements
  • 8.3.
  • General Contact Angle Patterns
  • 8.4.
  • Contact Angle Deviations from Smooth Curves of γ iv cosθ Versus γ iv
  • 8.5.
  • Reproducibility of Contact Angle Measurements
  • 6.3.4.
  • 8.5.1.
  • Contact Anles and Film Thickness
  • 8.5.2.
  • Contact Angles and Film Preparation Techniques
  • 8.5.3.
  • Reproducibility of Contact Angles of n-Alkanes
  • 8.6.
  • Identification of the Causes of Contact Angle Deviations on Fluoropolymer Surfaces
  • 8.6.1.
  • Geometrical Properties of Liquid Molecules
  • Automated Polynomial Fitting (APF) Methodology
  • 8.6.2.
  • Interpretation of Contact Angles of Liquids Consisting of Bulky Molecules
  • 8.6.2.1.
  • Liquids with Bulky Molecules/Teflon AF 1600 Systems
  • 8.6.2.2.
  • Liquid with Bulky Molecules/EGC-1700 Systems
  • 8.6.2.3.
  • Liquid with Bulky Molecules/ETMF Systems
  • 8.6.2.4.
  • Liquid with Bulky Molecules/ODMF Systems
  • 6.4.
  • 8.6.3.
  • Interpretation of Contact Angles of a Homologous Series of n-Alkanes
  • 8.6.3.1.
  • n-Alkanes/Teflon AF 1600 Systems
  • 8.6.3.2.
  • n-Alkanes/EGC-1700 Systems
  • 8.6.3.3.
  • n-Alkanes/ETMF Systems
  • 8.6.3.4.
  • n-Alkanes/ODMF Systems
  • Temperature Dependence of Contact Angles
  • 8.6.4.
  • Contact Angle Deviations Due to Strong Molecular Interactions at the Solid-Liquid Interface
  • 8.6.5.
  • Inertness of Probe Liquids with Respect to a Solid
  • 8.7.
  • Contact Angle Deviations on Self-Assembled Monolayers (SAMs)
  • 8.8.
  • Impact of Recent Work on Applicability of the Equation of State
  • 8.9.
  • Summary of the Physical Causes of Deviations from the Smooth Curves
  • 6.5.
  • 8.10.
  • Thermodynamic Status of Experimental Contact Angles and Applicability of the Equation of State
  • References
  • Chapter 9.
  • Contact Angles and Solid Surface Tensions
  • Daniel Kwok
  • 9.1.
  • Introduction
  • 9.1.1.
  • Zisman
  • Solid Surface Preparation Techniques
  • 9.2.
  • Surface Tension Component Approaches
  • 9.2.1.
  • Fowkes
  • 9.2.2.
  • Van Oss
  • 9.3.
  • Existence of an Equation of State
  • 9.3.1.
  • Introduction
  • 6.3.2.5.
  • 6.5.1.
  • 9.3.2.
  • Good's Interaction Parameter
  • 9.3.3.
  • Contact Angle Data
  • 9.3.4.
  • Interfacial Gibbs-Duhem Equations
  • 9.3.5.
  • Phase Rule for Interfacial Systems
  • 9.4.
  • Formulation of an Equation of State
  • Nonbiological Materials
  • 9.4.1.
  • Role of Adsorption
  • 9.4.2.
  • Equation of State: Original Formulation
  • 9.4.3.
  • Equation of State: Alternate Formulation
  • 9.4.4.
  • Possibility of Negative Solid-Liquid Interfacial Tensions
  • 9.5.
  • Experimental Data
  • 6.5.1.1.
  • 9.5.1.
  • Direct Force Measurements
  • 9.5.2.
  • Solidification Fronts
  • 9.5.3.
  • Sedimentation Volumes
  • 9.5.4.
  • Particle Suspension Layer Stability
  • 9.5.5.
  • Temperature Dependence of Contact Angles
  • Heat Pressing
  • 9.5.6.
  • Consistency of Solid Surface Tensions
  • 9.5.7.
  • Contact Angles of Polar and Nonpolar Liquids
  • 9.6.
  • Intermolecular Theory
  • 9.6.1.
  • Calculation of Interfacial Tensions and Contact Angles
  • 9.6.2.
  • Combining Rules for Solid-Liquid Interfacial Tensions
  • 6.5.1.2.
  • 9.6.3.
  • Calculated Adhesion and Contact Angle Patterns
  • 9.6.4.
  • Lifshitz Theory
  • References
  • Chapter 10.
  • Theoretical Approaches for Estimating Solid-Liquid Interfacial Tensions
  • A. Wilhelm Neumann
  • 10.1.
  • Introduction
  • Solvent Casting
  • 10.2.
  • Contact Angle Interpretion
  • 10.3.
  • Gibbs-Thomson Equation
  • 10.3.1.
  • Indirect Approaches: Homogeneous Nucleation and Melting in Pores
  • 10.3.2.
  • Direct Approaches: Skapski's Method and Analysis of Grain Boundary Grooves
  • 10.3.3.
  • Theoretical Estimations of Solid-Liquid Interfacial Tension Values
  • 6.5.1.3.
  • 10.4.
  • Theoretical Estimations of Solid-Liquid Interfacial Tensions
  • 10.4.1.
  • Microscopic Approach to Interfaces: Gradient Theory
  • 10.4.2.
  • Lifshitz Theory of van der Waals Forces
  • 10.4.3.
  • Results and Discussion
  • 10.5.
  • Difficiencies of the Gibbs-Thomson Equation
  • Dip Casting
  • 10.5.1.
  • Surface Stress and Surface Tension
  • 10.5.2.
  • Grain Boundary Energy and Solid-Melt Interfacial Tensions
  • 10.6.
  • Conclusions
  • References
  • Chapter 11.
  • Wettability and Surface Tension of Particles
  • A. Wilhelm Neumann
  • 6.5.1.4.
  • 11.1.
  • Introduction
  • 11.2.
  • Qualitative Approaches
  • 11.2.1.
  • Liquid-Liquid Contact Angle Measurement
  • 11.2.2.
  • Two-Phase Partition Methods
  • 11.2.3.
  • Hydrophobic Interaction Chromatography
  • Langmuir-Blodgett Film Deposition
  • 11.2.4.
  • Salting-Out Aggregation Test
  • 11.3.
  • Quantitative Approaches
  • 11.3.1.
  • Direct Contact Angle Measurements
  • 11.3.2.
  • Heat of Immersion
  • 11.3.3.
  • Film Flotation
  • Small and Extremely Large Contact Angles
  • 6.5.1.5.
  • 11.3.4.
  • Sedimentation Volume
  • 11.3.4.1.
  • Theory
  • 11.3.4.2.
  • Sedimentation of Polymer Particles in Binary Liquid Mixtures
  • 11.3.4.3.
  • Sedimentation Behavior in Single-Component Liquids and in Binary Liquid Mixtures --
  • Self-Assembled Monolayers
  • 6.5.1.6.
  • Vapor and Molecular Deposition Techniques
  • 6.5.1.7.
  • Siliconization
  • 6.5.1.8.
  • Surface Polishing
  • 6.5.1.9.
  • Preparation of Powders for Contact Angle Measurements
  • 6.3.3.
  • 6.5.2.
  • Biological Materials
  • 6.5.2.1.
  • Teeth and Skin
  • 6.5.2.2.
  • Bacteria, Cells, Proteins, and Liposomes
  • 6.5.2.3.
  • Hydrogels
  • 6.5.3.
  • Cleaning and Handling Solid Surfaces
  • ADSA-D for Measurement of Small Contact Angles and Contact Angles on Nonideal Surfaces
  • References
  • Chapter 7.
  • Thermodynamic Status of Contact Angles
  • Hossein Tavana
  • 7.1.
  • Introduction
  • 7.2.
  • Thermodynamic Modeling and Free Energy Analysis of Solid-Liquid-Fluid Systems
  • 7.2.1.
  • Vertical Plate Model
  • 6.3.3.1.
  • 7.2.1.1.
  • Driving Force Term, Δ F1
  • 7.2.1.2.
  • Free Energy Change of the Liquid-Vapor Interface, Δ F2
  • 7.2.1.3.
  • Work Done Against Gravity, Δ F3
  • 7.2.2.
  • Contact Angles on a Smooth but Heterogeneous Surface Consisting of Horizontal Strips
  • 7.2.3.
  • Contact Angles on a Smooth but Heterogeneous Surface Consisting of Vertical Strips
  • Numerical Procedure
  • 7.2.4.
  • Contact Angles on Homogeneous but Rough Surfaces
  • 7.2.4.1.
  • Driving Force Term, Δ F1
  • 7.2.4.2.
  • Free Energy Change of the Liquid---Vapor Interface, Δ F2
  • 7.2.4.3.
  • Work Done Against Gravity, Δ F3
  • 7.2.4.4.
  • Application to Idealized Rough Surfaces
  • 6.3.3.2.
  • 7.2.5.
  • Flotation of Cylindrical Particles at Liquid-Fluid Interfaces
  • 7.2.5.1.
  • Driving Potential, Δ F1
  • 7.2.5.2.
  • Work to Alter Interface 23, Δ F2
  • 7.2.5.3.
  • Work Done Against Gravity (On the Liquid), Δ F3
  • 7.2.5.4.
  • Work Done Against Gravity (on the Particle), Δ F4
  • ADSA-D Setup
  • 7.2.6.
  • Contact Angle Phenomena in the Presence of a Thin Liquid Film
  • 7.2.6.1.
  • Thermodynamic Model
  • 7.2.6.2.
  • Mechanical Equilibrium Conditions
  • 7.3.
  • Contact Angle Hysteresis Phenomena: Overview and Current View
  • 7.3.1.
  • Interpretation of Time-Dependent Receding Angles
  • Behavior of Particles at Solidification Fronts
  • A. Wilhelm Neumann
  • 12.1.
  • Introduction
  • 12.2.
  • Review of Theoretical Models
  • 12.2.1.
  • Critical Velocity for Particle Engulfment
  • 12.2.2.
  • Available Theoretical Models
  • 11.3.5.
  • 12.3.
  • Experimental
  • 12.3.1.
  • Experimental Setup
  • 12.3.2.
  • Matrix Materials
  • 12.3.3.
  • Experiments
  • 12.4.
  • Thermodynamic Interpretation
  • Capillary Penetration
  • 12.5.
  • Critical Velocity and Dimensional Analysis
  • 12.6.
  • Determination of Particle or Solid Surface Tensions from the Critical Velocity
  • 12.7.
  • Application of Solidification Front Technique to Determine Particle Surface Tensions
  • 12.7.1.
  • Surface Tensions of Fibers
  • 12.7.2.
  • Surface Tensions of Biological Cells
  • 11.3.5.1.
  • 12.7.3.
  • Surface Tensions of Coal Particles
  • 12.8.
  • Microscopic Interpretation of Particle-Front Interactions
  • 12.8.1.
  • Particle-Front Behavior in View of van der Waals Interactions
  • 12.8.2.
  • Determination of Repulsive Forces and Critical Separation Distances for Particle Engulfment
  • References
  • Chapter 13.
  • Theory
  • Line Tension and the Drop Size Dependence of Contact Angles
  • A. Wilhelm Neumann
  • 13.1.
  • Introduction
  • 13.1.1.
  • Applications
  • 13.1.2.
  • Size Dependence of Contact Angles
  • 13.2.
  • Theory
  • 11.3.5.2.
  • 13.2.1.
  • Density Functional Theory
  • 13.2.2.
  • Interface Displacement Model
  • 13.2.3.
  • Molecular Dynamics
  • 13.3.
  • Measurement
  • 13.3.1.
  • Liquid-Liquid Systems
  • Experiments
  • 13.3.2.
  • Liquid-Solid Systems
  • 13.3.2.1.
  • Millimeter Scale
  • 13.3.2.2.
  • Submillimeter Scale
  • 13.3.2.3.
  • Micrometer Scale
  • 13.3.2.4.
  • Alternative Methods
  • References
  • 13.3.3.
  • Striped Surfaces
  • 13.3.3.1.
  • Zero Line Tension
  • 13.3.3.2.
  • Nonzero Line Tension
  • 13.4.
  • Discussion
  • 13.4.1.
  • Solid Surface Heterogeneity
  • Chapter 12.
  • 13.4.2.
  • Sign of Line Tension
  • 13.4.3.
  • Conclusions
  • References
Dimensions
24 cm.
Edition
  • 2nd ed. /
  • edited by: A. Wilhelm Neumann, Robert David, Yi Zuo.
Extent
xxii, 743 p.
Isbn
9780849396878
Isbn Type
(hardcover : alk. paper)
Lccn
2010028241
Other physical details
ill.
System control number
  • (CaMWU)u2150840-01umb_inst
  • 2247313
  • (Sirsi) i9780849396878
  • (OCoLC)144565646

Library Locations

  • Albert D. Cohen Management LibraryBorrow it
    181 Freedman Crescent, Winnipeg, MB, R3T 5V4, CA
    49.807878 -97.129961
  • Architecture/Fine Arts LibraryBorrow it
    84 Curry Place, Winnipeg, MB, CA
    49.807716 -97.136226
  • Archives and Special CollectionsBorrow it
    25 Chancellors Circle (Elizabeth Dafoe Library), Room 330, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Bibliothèque Alfred-Monnin (Université de Saint-Boniface)Borrow it
    200, avenue de la Cathédrale, Local 2110, Winnipeg, MB, R2H 0H7, CA
    49.888861 -97.119735
  • Bill Larson Library (Grace Hospital)Borrow it
    300 Booth Drive, G-227, Winnipeg, MB, R3J 3M7, CA
    49.882400 -97.276436
  • Carolyn Sifton - Helene Fuld Library (St. Boniface General Hospital)Borrow it
    409 Tache Avenue, Winnipeg, MB, R2H 2A6, CA
    49.883388 -97.126050
  • Concordia Hospital LibraryBorrow it
    1095 Concordia Avenue, Winnipeg, MB, R2K 3S8, CA
    49.913252 -97.064683
  • Donald W. Craik Engineering LibraryBorrow it
    75B Chancellors Circle (Engineering Building E3), Room 361, Winnipeg, MB, R3T 2N2, CA
    49.809053 -97.133292
  • E.K. Williams Law LibraryBorrow it
    224 Dysart Road, Winnipeg, MB, R3T 5V4, CA
    49.811829 -97.131017
  • Eckhardt-Gramatté Music LibraryBorrow it
    136 Dafoe Road (Taché Arts Complex), Room 257, Winnipeg, MB, R3T 2N2, CA
    49.807964 -97.132222
  • Elizabeth Dafoe LibraryBorrow it
    25 Chancellors Circle, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Fr. H. Drake Library (St. Paul's College)Borrow it
    70 Dysart Road, Winnipeg, MB, R3T 2M6, CA
    49.810605 -97.138184
  • J.W. Crane Memorial Library (Deer Lodge Centre)Borrow it
    2109 Portage Avenue, Winnipeg, MB, R3J 0L3, CA
    49.878000 -97.235520
  • Libraries Annex (not open to the public; please see web page for details)Borrow it
    25 Chancellors Circle (in the Elizabeth Dafoe Library), Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Neil John Maclean Health Sciences LibraryBorrow it
    727 McDermot Avenue (Brodie Centre), 200 Level, Winnipeg, MB, R3E 3P5, CA
    49.903563 -97.160554
  • Sciences and Technology LibraryBorrow it
    186 Dysart Road, Winnipeg, MB, R3T 2M8, CA
    49.811526 -97.133257
  • Seven Oaks General Hospital LibraryBorrow it
    2300 McPhillips Street, Winnipeg, MB, R2V 3M3, CA
    49.955177 -97.148865
  • Sister St. Odilon Library (Misericordia Health Centre)Borrow it
    99 Cornish Avenue, Winnipeg, MB, R3C 1A2, CA
    49.879592 -97.160425
  • St. John's College LibraryBorrow it
    92 Dysart Road, Winnipeg, MB, R3T 2M5, CA
    49.811242 -97.137156
  • Victoria General Hospital LibraryBorrow it
    2340 Pembina Highway, Winnipeg, MB, R3T 2E8, CA
    49.806755 -97.152739
  • William R Newman Library (Agriculture)Borrow it
    66 Dafoe Road, Winnipeg, MB, R3T 2R3, CA
    49.806936 -97.135525
Processing Feedback ...