The Resource Enhanced oil recovery field case studies, James J. Sheng, (electronic resource)

Enhanced oil recovery field case studies, James J. Sheng, (electronic resource)

Label
Enhanced oil recovery field case studies
Title
Enhanced oil recovery field case studies
Statement of responsibility
James J. Sheng
Creator
Subject
Genre
Language
  • eng
  • eng
Summary
Enhanced Oil Recovery Field Case Studies bridges the gap between theory and practice in a range of real-world EOR settings. Areas covered include steam and polymer flooding, use of foam, in situ combustion, microorganisms, ""smart water""-based EOR in carbonates and sandstones, and many more. Oil industry professionals know that the key to a successful enhanced oil recovery project lies in anticipating the differences between plans and the realities found in the field. This book aids that effort, providing valuable case studies from more than 250 EOR pilot and field applicatio
Cataloging source
MiAaPQ
http://library.link/vocab/creatorName
Sheng, James J
Dewey number
622.33827
Illustrations
  • illustrations
  • charts
Index
index present
Language note
English
LC call number
TN870
LC item number
.S54 2013
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/subjectName
  • Oil fields
  • Gas fields
Label
Enhanced oil recovery field case studies, James J. Sheng, (electronic resource)
Instantiates
Publication
Note
Description based upon print version of record
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Content category
text
Content type code
  • txt
Contents
  • Front Cover; Enhanced Oil Recovery Field Case Studies; Copyright Page; Contents; Preface; Contributors; Acknowledgments; 1 Gas Flooding; 1.1 What Is Gas Flooding?; 1.2 Gas Flood Design; 1.3 Technical and Economic Screening Process; 1.4 Gas Injection Design and WAG; 1.5 Phase Behavior; 1.5.1 Standard (or Basic) PVT Data; 1.5.2 Swelling Test; 1.5.3 Slim-Tube Test; 1.5.4 Multicontact Test; 1.5.5 Fluid Characterization Using an Equation-of-State; 1.6 MMP and Displacement Mechanisms; 1.6.1 Simplified Ternary Representation of Displacement Mechanisms
  • 1.6.2 Displacement Mechanisms for Field Gas Floods1.6.3 Determination of MMP; 1.7 Field Cases; 1.7.1 Slaughter Estate Unit CO2 Flood; 1.7.2 Immiscible Weeks Island Gravity Stable CO2 Flood; 1.7.3 Jay Little Escambia Creek Nitrogen Flood; 1.7.4 Overview of Field Experience; 1.8 Concluding Remarks; Abbreviations; References; 2 Enhanced Oil Recovery by Using CO2 Foams: Fundamentals and Field Applications; 2.1 Foam Fundamentals; 2.1.1 Why CO2 Is so Popular in Recent Years?; 2.1.2 Why CO2 Is of Interest Compared to Other Gases?; 2.1.3 Why CO2 Is Injected as Foams?
  • 2.1.4 Foam in Porous Media: Creation and Coalescence Mechanisms2.1.5 Foam in Porous Media: Three Foam States and Foam Generation; 2.1.6 Foam in Porous Media: Two Strong-Foam Regimes-High-Quality and Low-Quality Regimes; 2.1.7 Modeling Foams in Porous Media; 2.1.8 Foam Injection Methods and Gravity Segregation; 2.1.9 CO2-Foam Coreflood Experiments; 2.1.10 Effect of Subsurface Heterogeneity-Limiting Capillary Pressure and Limiting Water Saturation; 2.1.11 Foam-Oil Interactions; 2.2 Foam Field Applications; 2.2.1 The First Foam Field Applications, Siggins Field, Illinois
  • 2.2.2 Steam Foam EOR, Midway Sunset Field, California2.2.3 CO2/N2 Foam Injection in Wilmington, California (1984); 2.2.4 CO2-Foam Injection in Rock Creek, Virginia (1984-1985); 2.2.5 CO2-Foam Injection in Rangely Weber Sand Unit, Colorado (1988-1990); 2.2.6 CO2-Foam Injection in North Ward-Estes, Texas (1990-1991); 2.2.7 CO2-Foam Injection in the East Vacuum Grayburg/San Andres Unit, New Mexico (1991-1993); 2.2.8 CO2-Foam Injection in East Mallet Unit, Texas, and McElmo Creek Unit, Utah (1991-1994); 2.3 Typical Field Responses During CO2-Foam Applications
  • 2.3.1 Diversion from High- to Low-Permeability Layers2.3.2 Typical Responses from Successful SAG Processes; 2.3.3 Typical Responses from Successful Surfactant-Gas Coinjection Processes; 2.4 Conclusions; Acknowledgment; Appendix-Expression of Gas-Mobility Reduction in the Presence of Foams; References; 3 Polymer Flooding-Fundamentals and Field Cases; 3.1 Polymers Classification; 3.2 Polymer Solution Viscosity; 3.2.1 Salinity and Concentration Effects; 3.2.2 Shear Effect; 3.2.3 pH Effect; 3.3 Polymer Flow Behavior in Porous Media; 3.3.1 Polymer Viscosity in Porous Media; 3.3.2 Polymer Retention
  • 3.3.3 Inaccessible Pore Volume
Dimensions
unknown
Extent
1 online resource (710 p.)
Form of item
online
Isbn
9781299472884
Media category
computer
Media type code
  • c
Specific material designation
remote
System control number
  • (CKB)2550000001019801
  • (EBL)1170131
  • (OCoLC)850222091
  • (SSID)ssj0000906907
  • (PQKBManifestationID)11553700
  • (PQKBTitleCode)TC0000906907
  • (PQKBWorkID)10856286
  • (PQKB)11667781
  • (MiAaPQ)EBC1170131
  • (EXLCZ)992550000001019801
Label
Enhanced oil recovery field case studies, James J. Sheng, (electronic resource)
Publication
Note
Description based upon print version of record
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Content category
text
Content type code
  • txt
Contents
  • Front Cover; Enhanced Oil Recovery Field Case Studies; Copyright Page; Contents; Preface; Contributors; Acknowledgments; 1 Gas Flooding; 1.1 What Is Gas Flooding?; 1.2 Gas Flood Design; 1.3 Technical and Economic Screening Process; 1.4 Gas Injection Design and WAG; 1.5 Phase Behavior; 1.5.1 Standard (or Basic) PVT Data; 1.5.2 Swelling Test; 1.5.3 Slim-Tube Test; 1.5.4 Multicontact Test; 1.5.5 Fluid Characterization Using an Equation-of-State; 1.6 MMP and Displacement Mechanisms; 1.6.1 Simplified Ternary Representation of Displacement Mechanisms
  • 1.6.2 Displacement Mechanisms for Field Gas Floods1.6.3 Determination of MMP; 1.7 Field Cases; 1.7.1 Slaughter Estate Unit CO2 Flood; 1.7.2 Immiscible Weeks Island Gravity Stable CO2 Flood; 1.7.3 Jay Little Escambia Creek Nitrogen Flood; 1.7.4 Overview of Field Experience; 1.8 Concluding Remarks; Abbreviations; References; 2 Enhanced Oil Recovery by Using CO2 Foams: Fundamentals and Field Applications; 2.1 Foam Fundamentals; 2.1.1 Why CO2 Is so Popular in Recent Years?; 2.1.2 Why CO2 Is of Interest Compared to Other Gases?; 2.1.3 Why CO2 Is Injected as Foams?
  • 2.1.4 Foam in Porous Media: Creation and Coalescence Mechanisms2.1.5 Foam in Porous Media: Three Foam States and Foam Generation; 2.1.6 Foam in Porous Media: Two Strong-Foam Regimes-High-Quality and Low-Quality Regimes; 2.1.7 Modeling Foams in Porous Media; 2.1.8 Foam Injection Methods and Gravity Segregation; 2.1.9 CO2-Foam Coreflood Experiments; 2.1.10 Effect of Subsurface Heterogeneity-Limiting Capillary Pressure and Limiting Water Saturation; 2.1.11 Foam-Oil Interactions; 2.2 Foam Field Applications; 2.2.1 The First Foam Field Applications, Siggins Field, Illinois
  • 2.2.2 Steam Foam EOR, Midway Sunset Field, California2.2.3 CO2/N2 Foam Injection in Wilmington, California (1984); 2.2.4 CO2-Foam Injection in Rock Creek, Virginia (1984-1985); 2.2.5 CO2-Foam Injection in Rangely Weber Sand Unit, Colorado (1988-1990); 2.2.6 CO2-Foam Injection in North Ward-Estes, Texas (1990-1991); 2.2.7 CO2-Foam Injection in the East Vacuum Grayburg/San Andres Unit, New Mexico (1991-1993); 2.2.8 CO2-Foam Injection in East Mallet Unit, Texas, and McElmo Creek Unit, Utah (1991-1994); 2.3 Typical Field Responses During CO2-Foam Applications
  • 2.3.1 Diversion from High- to Low-Permeability Layers2.3.2 Typical Responses from Successful SAG Processes; 2.3.3 Typical Responses from Successful Surfactant-Gas Coinjection Processes; 2.4 Conclusions; Acknowledgment; Appendix-Expression of Gas-Mobility Reduction in the Presence of Foams; References; 3 Polymer Flooding-Fundamentals and Field Cases; 3.1 Polymers Classification; 3.2 Polymer Solution Viscosity; 3.2.1 Salinity and Concentration Effects; 3.2.2 Shear Effect; 3.2.3 pH Effect; 3.3 Polymer Flow Behavior in Porous Media; 3.3.1 Polymer Viscosity in Porous Media; 3.3.2 Polymer Retention
  • 3.3.3 Inaccessible Pore Volume
Dimensions
unknown
Extent
1 online resource (710 p.)
Form of item
online
Isbn
9781299472884
Media category
computer
Media type code
  • c
Specific material designation
remote
System control number
  • (CKB)2550000001019801
  • (EBL)1170131
  • (OCoLC)850222091
  • (SSID)ssj0000906907
  • (PQKBManifestationID)11553700
  • (PQKBTitleCode)TC0000906907
  • (PQKBWorkID)10856286
  • (PQKB)11667781
  • (MiAaPQ)EBC1170131
  • (EXLCZ)992550000001019801

Library Locations

  • Albert D. Cohen Management LibraryBorrow it
    181 Freedman Crescent, Winnipeg, MB, R3T 5V4, CA
    49.807878 -97.129961
  • Architecture/Fine Arts LibraryBorrow it
    84 Curry Place, Winnipeg, MB, CA
    49.807716 -97.136226
  • Archives and Special CollectionsBorrow it
    25 Chancellors Circle (Elizabeth Dafoe Library), Room 330, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Bibliothèque Alfred-Monnin (Université de Saint-Boniface)Borrow it
    200, avenue de la Cathédrale, Local 2110, Winnipeg, MB, R2H 0H7, CA
    49.888861 -97.119735
  • Bill Larson Library (Grace Hospital)Borrow it
    300 Booth Drive, G-227, Winnipeg, MB, R3J 3M7, CA
    49.882400 -97.276436
  • Carolyn Sifton - Helene Fuld Library (St. Boniface General Hospital)Borrow it
    409 Tache Avenue, Winnipeg, MB, R2H 2A6, CA
    49.883388 -97.126050
  • Concordia Hospital LibraryBorrow it
    1095 Concordia Avenue, Winnipeg, MB, R2K 3S8, CA
    49.913252 -97.064683
  • Donald W. Craik Engineering LibraryBorrow it
    75B Chancellors Circle (Engineering Building E3), Room 361, Winnipeg, MB, R3T 2N2, CA
    49.809053 -97.133292
  • E.K. Williams Law LibraryBorrow it
    224 Dysart Road, Winnipeg, MB, R3T 5V4, CA
    49.811829 -97.131017
  • Eckhardt-Gramatté Music LibraryBorrow it
    136 Dafoe Road (Taché Arts Complex), Room 257, Winnipeg, MB, R3T 2N2, CA
    49.807964 -97.132222
  • Elizabeth Dafoe LibraryBorrow it
    25 Chancellors Circle, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Fr. H. Drake Library (St. Paul's College)Borrow it
    70 Dysart Road, Winnipeg, MB, R3T 2M6, CA
    49.810605 -97.138184
  • J.W. Crane Memorial Library (Deer Lodge Centre)Borrow it
    2109 Portage Avenue, Winnipeg, MB, R3J 0L3, CA
    49.878000 -97.235520
  • Libraries Annex (not open to the public; please see web page for details)Borrow it
    25 Chancellors Circle (in the Elizabeth Dafoe Library), Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Neil John Maclean Health Sciences LibraryBorrow it
    727 McDermot Avenue (Brodie Centre), 200 Level, Winnipeg, MB, R3E 3P5, CA
    49.903563 -97.160554
  • Sciences and Technology LibraryBorrow it
    186 Dysart Road, Winnipeg, MB, R3T 2M8, CA
    49.811526 -97.133257
  • Seven Oaks General Hospital LibraryBorrow it
    2300 McPhillips Street, Winnipeg, MB, R2V 3M3, CA
    49.955177 -97.148865
  • Sister St. Odilon Library (Misericordia Health Centre)Borrow it
    99 Cornish Avenue, Winnipeg, MB, R3C 1A2, CA
    49.879592 -97.160425
  • St. John's College LibraryBorrow it
    92 Dysart Road, Winnipeg, MB, R3T 2M5, CA
    49.811242 -97.137156
  • Victoria General Hospital LibraryBorrow it
    2340 Pembina Highway, Winnipeg, MB, R3T 2E8, CA
    49.806755 -97.152739
  • William R Newman Library (Agriculture)Borrow it
    66 Dafoe Road, Winnipeg, MB, R3T 2R3, CA
    49.806936 -97.135525
Processing Feedback ...