The Resource From molecules to networks : an introduction to cellular and molecular neuroscience, edited by John H. Byrne, James L. Roberts, (electronic resource)

From molecules to networks : an introduction to cellular and molecular neuroscience, edited by John H. Byrne, James L. Roberts, (electronic resource)

Label
From molecules to networks : an introduction to cellular and molecular neuroscience
Title
From molecules to networks
Title remainder
an introduction to cellular and molecular neuroscience
Statement of responsibility
edited by John H. Byrne, James L. Roberts
Contributor
Subject
Genre
Language
  • eng
  • eng
Summary
An understanding of the nervous system at virtually any level of analysis requires an understanding of its basic building block, the neuron. This book provides the solid foundation of the morphological, biochemical, and biophysical properties of nerve cells that is needed by advanced undergraduates and graduate students, as well as researchers in need of a thorough reference.* Highly referenced for readers to pursue topics of interest in greater detail* Unique coverage of the application of mathematical modeling and simulation approaches not found in other textbooks* Richly ill
Cataloging source
MiAaPQ
Dewey number
  • 611/.0188 22
  • 612.8
Illustrations
illustrations
Index
index present
Language note
English
LC call number
QP356.2
LC item number
.F76 2004
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorDate
1951-
http://library.link/vocab/relatedWorkOrContributorName
  • Byrne, John H
  • Roberts, James Lewis
http://library.link/vocab/subjectName
  • Molecular neurobiology
  • Cytology
  • Neurons
Label
From molecules to networks : an introduction to cellular and molecular neuroscience, edited by John H. Byrne, James L. Roberts, (electronic resource)
Instantiates
Publication
Note
Description based upon print version of record
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Content category
text
Content type code
txt
Contents
  • Front Cover; From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience; Copyright Page; Full Contents; Contributors; Preface; Chapter 1. Cellular Components of Nervous Tissue; The Neuron; The Neuroglia; The Cerebral Vasculature; Chapter 2. Subcellular Organization of the Nervous System: Organelles and Their Functions; Axons and Dendrites: Unique Structural Components of Neurons; Protein Synthesis in Nervous Tissue; The Cytoskeletons of Neurons and Glial Cells; Molecular Motors in the Nervous System; Building and Maintaining Nervous System Cells
  • Chapter 3. Brain Energy MetabolismEnergy Metabolism of the Brain as a Whole Organ; Tight Coupling of Neuronal Activity, Blood Flow, and Energy Metabolism; Energy-Producing and Energy-Consuming Processes in the Brain; Brain Energy Metabolism at the Cellular Level; Glutamate and Nitrogen Metabolism: A Coordinated Shuttle Between Astrocytes and Neurons; The Astrocyte-Neuron Metabolic Unit; Chapter 4. Electrotonic Properties of Axons and Dendrites; Spread of Steady-State Signals; Spread of Transient Signals; Electrotonic Properties Underlying Propagation in Axons; Electrotonic Spread in Dendrites
  • Dynamic Properties of Passive Electrotonic StructureRelating Passive to Active Potentials; Chapter 5. Membrane Potential and Action Potential; The Membrane Potential; The Action Potential; Chapter 6. Molecular Properties of Ion Channels; Families of Ion Channels; Channel Gating; Ion Permeation; Ion Channel Distribution; Summary; Chapter 7. Dynamical Properties of Excitable Membranes; The Hodgkin-Huxley Model; A Geometric Analysis of Excitability; Chapter 8. Release of Neurotransmitters; Organization of the Chemical Synapse; Excitation-Secretion Coupling
  • The Molecular Mechanisms of the Nerve TerminalQuantal Analysis; Short-Term Synaptic Plasticity; Chapter 9. Pharmacology and Biochemistry of Synaptic Transmission: Classic Transmitters; Diverse Modes of Neuronal Communication; Chemical Transmission; Classic Neurotransmitters; Summary; Chapter 10. Nonclassic Signaling in the Brain; Peptide Neurotransmitters; Neurotensin as an Example of Peptide Neurotransmitters; Unconventional Transmitters; Synaptic Transmitters in Perspective; Chapter 11. Neurotransmitter Receptors; Ionotropic Receptors; G Protein-Coupled Receptors
  • Chapter 12. Intracellular SignalingSignaling Through G-Protein-Linked Receptors; Modulation of Neuronal Function by Protein Kinases and Phosphatases; Chapter 13. Regulation of Neuronal Gene Expression and Protein Synthesis; Intracellular Signaling Affects Nuclear Gene Expression; Role of cAMP and Ca2+ in the Activation Pathways of Transcription; Summary; Chapter 14. Mathematical Modeling and Analysis of Intracellular Signaling Pathways; Methods for Modelling Intracellular Signaling Pathways; General Issues in the Modeling of Biochemical Systems; Specific Modeling Methods; Summary
  • Chapter 15. Cell-Cell Communication: An Overview Emphasizing Gap Junctions
Dimensions
unknown
Extent
1 online resource (599 p.)
Form of item
online
Isbn
9780080491356
Media category
computer
Media type code
c
Specific material designation
remote
System control number
  • (CKB)1000000000364600
  • (EBL)294602
  • (OCoLC)437181606
  • (SSID)ssj0000158874
  • (PQKBManifestationID)11151355
  • (PQKBTitleCode)TC0000158874
  • (PQKBWorkID)10171356
  • (PQKB)10052660
  • (MiAaPQ)EBC294602
  • (EXLCZ)991000000000364600
Label
From molecules to networks : an introduction to cellular and molecular neuroscience, edited by John H. Byrne, James L. Roberts, (electronic resource)
Publication
Note
Description based upon print version of record
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Content category
text
Content type code
txt
Contents
  • Front Cover; From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience; Copyright Page; Full Contents; Contributors; Preface; Chapter 1. Cellular Components of Nervous Tissue; The Neuron; The Neuroglia; The Cerebral Vasculature; Chapter 2. Subcellular Organization of the Nervous System: Organelles and Their Functions; Axons and Dendrites: Unique Structural Components of Neurons; Protein Synthesis in Nervous Tissue; The Cytoskeletons of Neurons and Glial Cells; Molecular Motors in the Nervous System; Building and Maintaining Nervous System Cells
  • Chapter 3. Brain Energy MetabolismEnergy Metabolism of the Brain as a Whole Organ; Tight Coupling of Neuronal Activity, Blood Flow, and Energy Metabolism; Energy-Producing and Energy-Consuming Processes in the Brain; Brain Energy Metabolism at the Cellular Level; Glutamate and Nitrogen Metabolism: A Coordinated Shuttle Between Astrocytes and Neurons; The Astrocyte-Neuron Metabolic Unit; Chapter 4. Electrotonic Properties of Axons and Dendrites; Spread of Steady-State Signals; Spread of Transient Signals; Electrotonic Properties Underlying Propagation in Axons; Electrotonic Spread in Dendrites
  • Dynamic Properties of Passive Electrotonic StructureRelating Passive to Active Potentials; Chapter 5. Membrane Potential and Action Potential; The Membrane Potential; The Action Potential; Chapter 6. Molecular Properties of Ion Channels; Families of Ion Channels; Channel Gating; Ion Permeation; Ion Channel Distribution; Summary; Chapter 7. Dynamical Properties of Excitable Membranes; The Hodgkin-Huxley Model; A Geometric Analysis of Excitability; Chapter 8. Release of Neurotransmitters; Organization of the Chemical Synapse; Excitation-Secretion Coupling
  • The Molecular Mechanisms of the Nerve TerminalQuantal Analysis; Short-Term Synaptic Plasticity; Chapter 9. Pharmacology and Biochemistry of Synaptic Transmission: Classic Transmitters; Diverse Modes of Neuronal Communication; Chemical Transmission; Classic Neurotransmitters; Summary; Chapter 10. Nonclassic Signaling in the Brain; Peptide Neurotransmitters; Neurotensin as an Example of Peptide Neurotransmitters; Unconventional Transmitters; Synaptic Transmitters in Perspective; Chapter 11. Neurotransmitter Receptors; Ionotropic Receptors; G Protein-Coupled Receptors
  • Chapter 12. Intracellular SignalingSignaling Through G-Protein-Linked Receptors; Modulation of Neuronal Function by Protein Kinases and Phosphatases; Chapter 13. Regulation of Neuronal Gene Expression and Protein Synthesis; Intracellular Signaling Affects Nuclear Gene Expression; Role of cAMP and Ca2+ in the Activation Pathways of Transcription; Summary; Chapter 14. Mathematical Modeling and Analysis of Intracellular Signaling Pathways; Methods for Modelling Intracellular Signaling Pathways; General Issues in the Modeling of Biochemical Systems; Specific Modeling Methods; Summary
  • Chapter 15. Cell-Cell Communication: An Overview Emphasizing Gap Junctions
Dimensions
unknown
Extent
1 online resource (599 p.)
Form of item
online
Isbn
9780080491356
Media category
computer
Media type code
c
Specific material designation
remote
System control number
  • (CKB)1000000000364600
  • (EBL)294602
  • (OCoLC)437181606
  • (SSID)ssj0000158874
  • (PQKBManifestationID)11151355
  • (PQKBTitleCode)TC0000158874
  • (PQKBWorkID)10171356
  • (PQKB)10052660
  • (MiAaPQ)EBC294602
  • (EXLCZ)991000000000364600

Library Locations

  • Albert D. Cohen Management LibraryBorrow it
    181 Freedman Crescent, Winnipeg, MB, R3T 5V4, CA
    49.807878 -97.129961
  • Architecture/Fine Arts LibraryBorrow it
    84 Curry Place, Winnipeg, MB, CA
    49.807716 -97.136226
  • Archives and Special CollectionsBorrow it
    25 Chancellors Circle (Elizabeth Dafoe Library), Room 330, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Bibliothèque Alfred-Monnin (Université de Saint-Boniface)Borrow it
    200, avenue de la Cathédrale, Local 2110, Winnipeg, MB, R2H 0H7, CA
    49.888861 -97.119735
  • Bill Larson Library (Grace Hospital)Borrow it
    300 Booth Drive, G-227, Winnipeg, MB, R3J 3M7, CA
    49.882400 -97.276436
  • Carolyn Sifton - Helene Fuld Library (St. Boniface General Hospital)Borrow it
    409 Tache Avenue, Winnipeg, MB, R2H 2A6, CA
    49.883388 -97.126050
  • Concordia Hospital LibraryBorrow it
    1095 Concordia Avenue, Winnipeg, MB, R2K 3S8, CA
    49.913252 -97.064683
  • Donald W. Craik Engineering LibraryBorrow it
    75B Chancellors Circle (Engineering Building E3), Room 361, Winnipeg, MB, R3T 2N2, CA
    49.809053 -97.133292
  • E.K. Williams Law LibraryBorrow it
    224 Dysart Road, Winnipeg, MB, R3T 5V4, CA
    49.811829 -97.131017
  • Eckhardt-Gramatté Music LibraryBorrow it
    136 Dafoe Road (Taché Arts Complex), Room 257, Winnipeg, MB, R3T 2N2, CA
    49.807964 -97.132222
  • Elizabeth Dafoe LibraryBorrow it
    25 Chancellors Circle, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Fr. H. Drake Library (St. Paul's College)Borrow it
    70 Dysart Road, Winnipeg, MB, R3T 2M6, CA
    49.810605 -97.138184
  • J.W. Crane Memorial Library (Deer Lodge Centre)Borrow it
    2109 Portage Avenue, Winnipeg, MB, R3J 0L3, CA
    49.878000 -97.235520
  • Libraries Annex (not open to the public; please see web page for details)Borrow it
    25 Chancellors Circle (in the Elizabeth Dafoe Library), Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Neil John Maclean Health Sciences LibraryBorrow it
    727 McDermot Avenue (Brodie Centre), 200 Level, Winnipeg, MB, R3E 3P5, CA
    49.903563 -97.160554
  • Sciences and Technology LibraryBorrow it
    186 Dysart Road, Winnipeg, MB, R3T 2M8, CA
    49.811526 -97.133257
  • Seven Oaks General Hospital LibraryBorrow it
    2300 McPhillips Street, Winnipeg, MB, R2V 3M3, CA
    49.955177 -97.148865
  • Sister St. Odilon Library (Misericordia Health Centre)Borrow it
    99 Cornish Avenue, Winnipeg, MB, R3C 1A2, CA
    49.879592 -97.160425
  • St. John's College LibraryBorrow it
    92 Dysart Road, Winnipeg, MB, R3T 2M5, CA
    49.811242 -97.137156
  • Victoria General Hospital LibraryBorrow it
    2340 Pembina Highway, Winnipeg, MB, R3T 2E8, CA
    49.806755 -97.152739
  • William R Newman Library (Agriculture)Borrow it
    66 Dafoe Road, Winnipeg, MB, R3T 2R3, CA
    49.806936 -97.135525
Processing Feedback ...