The Resource Fundamentals of creep in metals and alloys, Michael E. Kassner, (electronic resource)

Fundamentals of creep in metals and alloys, Michael E. Kassner, (electronic resource)

Label
Fundamentals of creep in metals and alloys
Title
Fundamentals of creep in metals and alloys
Statement of responsibility
Michael E. Kassner
Creator
Subject
Genre
Language
  • eng
  • eng
Summary
Creep refers to the slow, permanent deformation of materials under external loads, or stresses. It explains the creep strength or resistance to this extension. This book is for experts in the field of strength of metals, alloys and ceramics. It explains creep behavior at the atomic or "dislocation defect? level. This book has many illustrations and many references. The figure formats are uniform and consistently labeled for increased readability. This book is the second edition that updates and improves the earlier edition. Numerous line drawings with consistent format and units all
Cataloging source
MiAaPQ
http://library.link/vocab/creatorName
Kassner, Michael Ernest
Dewey number
  • 620.11233 21
  • 620.16
Illustrations
illustrations
Index
index present
Language note
English
LC call number
TA460
LC item number
.K255 2009
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/subjectName
  • Metals
  • Metals
  • Alloys
Label
Fundamentals of creep in metals and alloys, Michael E. Kassner, (electronic resource)
Instantiates
Publication
Note
Previous ed.: Amsterdam; Oxford: Elsevier, 2004
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Content category
text
Content type code
txt
Contents
  • Front cover; Fundamentals of Creep in Metals and Alloys; Copyright Page; Preface; Contents; List of Symbols and Abbreviations; Chapter 1. Introduction; 1.1 Description of Creep; 1.2 Objectives; Chapter 2. Five-Power-Law Creep; 2.1 Macroscopic Relationships; 2.1.1 Activation Energy and Stress Exponents; 2.1.2 Infl uence of the Elastic Modulus; 2.1.3 Stacking Fault Energy and Summary; 2.1.4 Natural Three-Power-Law; 2.1.5 Substitutional Solid Solutions; 2.2 Microstructural Observations
  • 2.2.1 Subgrain Size, Frank Network Dislocation Density, Subgrain Misorientation Angle, and the Dislocation Separation within2.2.2 Constant Structure Equations; 2.2.3 Primary Creep Microstructures; 2.2.4 Creep Transient Experiments; 2.2.5 Internal Stress; 2.3 Rate-Controlling Mechanisms; 2.3.1 Introduction; 2.3.2 Dislocation Microstructure and the Rate-Controlling Mechanism; 2.3.3 In situ and Microstructure-Manipulation Experiments; 2.3.4 Additional Comments on Network Strengthening; 2.4 Other Effects on Five-Power-Law Creep; 2.4.1 Large Strain Creep Deformation and Texture Effects
  • 2.4.2 Effect of Grain Size2.4.3 Impurity and Small Quantities of Strengthening Solutes; 2.4.4 Sigmoidal Creep; Chapter 3. Diffusional Creep; Chapter 4. Harper-Dorn Creep; 4.1 Introduction; 4.2 Theories of Harper-Dorn Creep; 4.3 More Recent Developments; 4.4 Other Materials for which Harper-Dorn has been Suggested; Chapter 5. Three-Power-Law Viscous Glide Creep; Chapter 6. Superplasticity; 6.1 Introduction; 6.2 Characteristics of Fine Structure Superplasticity; 6.3 Microstructure of Fine Structure Superplastic Materials; 6.3.1 Grain Size and Shape; 6.3.2 Presence of a Second Phase
  • 6.3.3 Nature and Properties of Grain Boundaries6.4 Texture Studies in Superplasticity; 6.5 High Strain-Rate Superplasticity; 6.5.1 High Strain-Rate Superplasticity in Metal-Matrix Composites; 6.5.2 High Strain-Rate Superplasticity in Mechanically Alloyed Materials; 6.6 Superplasticity in Nano and Submicrocrystalline Materials; Chapter 7. Recrystallization; 7.1 Introduction; 7.2 Discontinuous Dynamic Recrystallization (DRX); 7.3 Geometric Dynamic Recrystallization; 7.4 Particle-Stimulated Nucleation (PSN); 7.5 Continuous Reactions; Chapter 8. Creep Behavior of Particle-Strengthened Alloys
  • 8.1 Introduction8.2 Small Volume-Fraction Particles that are Coherent and Incoherent with the Matrix with Small Aspect Ratios; 8.2.1 Introduction and Theory; 8.2.2 Local and General Climb of Dislocations over Obstacles; 8.2.3 Detachment Model; 8.2.4 Constitutive Relationships; 8.2.5 Microstructural Effects; 8.2.6 Coherent Particles; Chapter 9. Creep of Intermetallics; 9.1 Introduction; 9.2 Titanium Aluminides; 9.2.1 Introduction; 9.2.2 Rate-Controlling Creep Mechanisms in FL TiAl Intermetallics During ''Secondary'' Creep; 9.2.3 Primary Creep in FL Microstructures
  • 9.2.4 Tertiary Creep in FL Microstructures
Dimensions
unknown
Edition
2nd ed.
Extent
1 online resource (312 p.)
Form of item
online
Isbn
9781282286931
Media category
computer
Media type code
c
Specific material designation
remote
System control number
  • (CKB)1000000000716465
  • (EBL)421184
  • (OCoLC)476255710
  • (SSID)ssj0000159859
  • (PQKBManifestationID)11151679
  • (PQKBTitleCode)TC0000159859
  • (PQKBWorkID)10181780
  • (PQKB)10696879
  • (MiAaPQ)EBC421184
  • (EXLCZ)991000000000716465
Label
Fundamentals of creep in metals and alloys, Michael E. Kassner, (electronic resource)
Publication
Note
Previous ed.: Amsterdam; Oxford: Elsevier, 2004
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Content category
text
Content type code
txt
Contents
  • Front cover; Fundamentals of Creep in Metals and Alloys; Copyright Page; Preface; Contents; List of Symbols and Abbreviations; Chapter 1. Introduction; 1.1 Description of Creep; 1.2 Objectives; Chapter 2. Five-Power-Law Creep; 2.1 Macroscopic Relationships; 2.1.1 Activation Energy and Stress Exponents; 2.1.2 Infl uence of the Elastic Modulus; 2.1.3 Stacking Fault Energy and Summary; 2.1.4 Natural Three-Power-Law; 2.1.5 Substitutional Solid Solutions; 2.2 Microstructural Observations
  • 2.2.1 Subgrain Size, Frank Network Dislocation Density, Subgrain Misorientation Angle, and the Dislocation Separation within2.2.2 Constant Structure Equations; 2.2.3 Primary Creep Microstructures; 2.2.4 Creep Transient Experiments; 2.2.5 Internal Stress; 2.3 Rate-Controlling Mechanisms; 2.3.1 Introduction; 2.3.2 Dislocation Microstructure and the Rate-Controlling Mechanism; 2.3.3 In situ and Microstructure-Manipulation Experiments; 2.3.4 Additional Comments on Network Strengthening; 2.4 Other Effects on Five-Power-Law Creep; 2.4.1 Large Strain Creep Deformation and Texture Effects
  • 2.4.2 Effect of Grain Size2.4.3 Impurity and Small Quantities of Strengthening Solutes; 2.4.4 Sigmoidal Creep; Chapter 3. Diffusional Creep; Chapter 4. Harper-Dorn Creep; 4.1 Introduction; 4.2 Theories of Harper-Dorn Creep; 4.3 More Recent Developments; 4.4 Other Materials for which Harper-Dorn has been Suggested; Chapter 5. Three-Power-Law Viscous Glide Creep; Chapter 6. Superplasticity; 6.1 Introduction; 6.2 Characteristics of Fine Structure Superplasticity; 6.3 Microstructure of Fine Structure Superplastic Materials; 6.3.1 Grain Size and Shape; 6.3.2 Presence of a Second Phase
  • 6.3.3 Nature and Properties of Grain Boundaries6.4 Texture Studies in Superplasticity; 6.5 High Strain-Rate Superplasticity; 6.5.1 High Strain-Rate Superplasticity in Metal-Matrix Composites; 6.5.2 High Strain-Rate Superplasticity in Mechanically Alloyed Materials; 6.6 Superplasticity in Nano and Submicrocrystalline Materials; Chapter 7. Recrystallization; 7.1 Introduction; 7.2 Discontinuous Dynamic Recrystallization (DRX); 7.3 Geometric Dynamic Recrystallization; 7.4 Particle-Stimulated Nucleation (PSN); 7.5 Continuous Reactions; Chapter 8. Creep Behavior of Particle-Strengthened Alloys
  • 8.1 Introduction8.2 Small Volume-Fraction Particles that are Coherent and Incoherent with the Matrix with Small Aspect Ratios; 8.2.1 Introduction and Theory; 8.2.2 Local and General Climb of Dislocations over Obstacles; 8.2.3 Detachment Model; 8.2.4 Constitutive Relationships; 8.2.5 Microstructural Effects; 8.2.6 Coherent Particles; Chapter 9. Creep of Intermetallics; 9.1 Introduction; 9.2 Titanium Aluminides; 9.2.1 Introduction; 9.2.2 Rate-Controlling Creep Mechanisms in FL TiAl Intermetallics During ''Secondary'' Creep; 9.2.3 Primary Creep in FL Microstructures
  • 9.2.4 Tertiary Creep in FL Microstructures
Dimensions
unknown
Edition
2nd ed.
Extent
1 online resource (312 p.)
Form of item
online
Isbn
9781282286931
Media category
computer
Media type code
c
Specific material designation
remote
System control number
  • (CKB)1000000000716465
  • (EBL)421184
  • (OCoLC)476255710
  • (SSID)ssj0000159859
  • (PQKBManifestationID)11151679
  • (PQKBTitleCode)TC0000159859
  • (PQKBWorkID)10181780
  • (PQKB)10696879
  • (MiAaPQ)EBC421184
  • (EXLCZ)991000000000716465

Library Locations

  • Albert D. Cohen Management LibraryBorrow it
    181 Freedman Crescent, Winnipeg, MB, R3T 5V4, CA
    49.807878 -97.129961
  • Architecture/Fine Arts LibraryBorrow it
    84 Curry Place, Winnipeg, MB, CA
    49.807716 -97.136226
  • Archives and Special CollectionsBorrow it
    25 Chancellors Circle (Elizabeth Dafoe Library), Room 330, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Bibliothèque Alfred-Monnin (Université de Saint-Boniface)Borrow it
    200, avenue de la Cathédrale, Local 2110, Winnipeg, MB, R2H 0H7, CA
    49.888861 -97.119735
  • Bill Larson Library (Grace Hospital)Borrow it
    300 Booth Drive, G-227, Winnipeg, MB, R3J 3M7, CA
    49.882400 -97.276436
  • Carolyn Sifton - Helene Fuld Library (St. Boniface General Hospital)Borrow it
    409 Tache Avenue, Winnipeg, MB, R2H 2A6, CA
    49.883388 -97.126050
  • Concordia Hospital LibraryBorrow it
    1095 Concordia Avenue, Winnipeg, MB, R2K 3S8, CA
    49.913252 -97.064683
  • Donald W. Craik Engineering LibraryBorrow it
    75B Chancellors Circle (Engineering Building E3), Room 361, Winnipeg, MB, R3T 2N2, CA
    49.809053 -97.133292
  • E.K. Williams Law LibraryBorrow it
    224 Dysart Road, Winnipeg, MB, R3T 5V4, CA
    49.811829 -97.131017
  • Eckhardt-Gramatté Music LibraryBorrow it
    136 Dafoe Road (Taché Arts Complex), Room 257, Winnipeg, MB, R3T 2N2, CA
    49.807964 -97.132222
  • Elizabeth Dafoe LibraryBorrow it
    25 Chancellors Circle, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Fr. H. Drake Library (St. Paul's College)Borrow it
    70 Dysart Road, Winnipeg, MB, R3T 2M6, CA
    49.810605 -97.138184
  • J.W. Crane Memorial Library (Deer Lodge Centre)Borrow it
    2109 Portage Avenue, Winnipeg, MB, R3J 0L3, CA
    49.878000 -97.235520
  • Libraries Annex (not open to the public; please see web page for details)Borrow it
    25 Chancellors Circle (in the Elizabeth Dafoe Library), Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Neil John Maclean Health Sciences LibraryBorrow it
    727 McDermot Avenue (Brodie Centre), 200 Level, Winnipeg, MB, R3E 3P5, CA
    49.903563 -97.160554
  • Sciences and Technology LibraryBorrow it
    186 Dysart Road, Winnipeg, MB, R3T 2M8, CA
    49.811526 -97.133257
  • Seven Oaks General Hospital LibraryBorrow it
    2300 McPhillips Street, Winnipeg, MB, R2V 3M3, CA
    49.955177 -97.148865
  • Sister St. Odilon Library (Misericordia Health Centre)Borrow it
    99 Cornish Avenue, Winnipeg, MB, R3C 1A2, CA
    49.879592 -97.160425
  • St. John's College LibraryBorrow it
    92 Dysart Road, Winnipeg, MB, R3T 2M5, CA
    49.811242 -97.137156
  • Victoria General Hospital LibraryBorrow it
    2340 Pembina Highway, Winnipeg, MB, R3T 2E8, CA
    49.806755 -97.152739
  • William R Newman Library (Agriculture)Borrow it
    66 Dafoe Road, Winnipeg, MB, R3T 2R3, CA
    49.806936 -97.135525
Processing Feedback ...