The Resource Mechanisms of diffusional phase transformations in metals and alloys, Hubert I. Aaronson, Masato Enomoto, Jong K. Lee

Mechanisms of diffusional phase transformations in metals and alloys, Hubert I. Aaronson, Masato Enomoto, Jong K. Lee

Label
Mechanisms of diffusional phase transformations in metals and alloys
Title
Mechanisms of diffusional phase transformations in metals and alloys
Statement of responsibility
Hubert I. Aaronson, Masato Enomoto, Jong K. Lee
Creator
Contributor
Subject
Language
eng
Summary
"Developed by the late metallurgy professor and master experimentalist, Hubert I. Aaronson, this collection of lecture notes details the fundamental principles of phase transformations in metals and alloys upon which steel and other metals industries are based." "Mechanisms of Diffusional Phase Transformations in Metals and Alloys is devoted to solid-solid phase transformations in which elementary atomic processes are diffusional jumps, these processes occur in a series of so-called nucleation and growth through interface migration. Instead of relying strictly on a pedagogical approach, it documents the evolution of phase transformation concepts. The authors present topics by describing a phenomenon and then following up with a corresponding hypothesis or alternative explanation. In this way, the book also shows how the field continues to evolve and meet new challenges." "Integrated with information from a number of key papers and review articles, this volume reflects this revered and influential instructor's unique and passionate way of introducing well-established theories and knowledge in a systematic way, at the same time introducing, in great detail, how a new idea or interpretation of a phenomenon has emerged, evolved, and gained its current status." "If the published version of a theory or a model was too condensed, Aaronson worked the problem out in painstaking detail so that graduate students could follow the derivations. This collection is full of such unique "Aaronsonian idiosyncrasies, " which add immense value as a powerful tool for learning in this challenging materials field."--BOOK JACKET
Cataloging source
DLC
http://library.link/vocab/creatorName
Aaronson, Hubert I
Dewey number
530.4/14
Illustrations
illustrations
Index
index present
LC call number
TA459
LC item number
.A225 2010
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/relatedWorkOrContributorName
  • Enomoto, Masato
  • Lee, Jong K
http://library.link/vocab/subjectName
  • Metals
  • Alloys
  • Metals
  • Alloys
  • Diffusion processes
  • Phase transformations (Statistical physics)
Label
Mechanisms of diffusional phase transformations in metals and alloys, Hubert I. Aaronson, Masato Enomoto, Jong K. Lee
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • 1.1.3.
  • Total Value of T
  • 2.10.
  • Time-Dependent Nucleation Rate for Homogeneous Nucleation with Isotropic y
  • 2.10.1.
  • Introduction
  • 2.10.2.
  • Activation Energy of Nucleation Δ G*
  • 2.10.2.1.
  • Introduction to the Critical Nucleus Shape Problem
  • 2.10.2.2.
  • Mixing Free Energy, Δ GM
  • G x Diagram Approach
  • 2.10.2.3.
  • Introduction to the Volume Strain Energy Incorporation Problem
  • 2.10.2.4.
  • Conventional Gibbsian Approach
  • 2.10.2.5.
  • Wulff Volume Approach for Δ G*
  • 2.10.2.6.
  • Nucleus Volume Approach for Δ G*
  • 2.10.3.
  • 1.1.3.1.
  • Frequency Factor β *
  • 2.10.4.
  • Zeldovich Factor, Incubation Time and the Re-Derivation of Frequency Factor
  • 2.10.5.
  • Nucleation Site Density, N
  • 2.10.6.
  • Time-Dependent Nucleation Rate
  • 2.11.
  • Ancillary Parameters
  • 2.11.1.
  • Fundamentals
  • Volume Diffusivity
  • 2.11.2.
  • Volume Free Energy Change
  • 2.11.3.
  • Volume Strain Energy
  • 2.11.3.1.
  • Elementary Calculation of Dilatational Strain Energy for a Plate-Shaped Nucleus
  • 2.11.3.2.
  • Volume Strain Energy of Fully Coherent Precipitates
  • 2.11.3.3.
  • 1.1.3.2.
  • Volume Strain Energy of Incoherent Precipitates
  • 2.11.3.4.
  • Volume Shear Strain Energy
  • 2.11.3.5.
  • Unsolved Major Problems in Volume Strain Energy
  • 2.11.4.
  • Interfacial Energy
  • 2.11.4.1.
  • Scope
  • 2.11.4.2.
  • Ideal Solution Approximation
  • Energy of Coherent Interphase Boundaries
  • 2.11.4.3.
  • Energy of Partially Coherent Interphase Boundaries
  • 2.11.4.4.
  • Energy of Disordered Interphase Boundaries
  • 2.12.
  • Preliminary Consideration of the Approximation for β = Δ G, / + W
  • 2.13.
  • Nonclassical Nucleation Theory
  • 2.13.1.
  • 1.1.3.3.
  • Continuum Theory
  • 2.13.1.1.
  • General Introduction
  • 2.13.1.2.
  • Calculation of the Nonclassical Δ G*
  • 2.13.1.3.
  • General Properties of the Critical Nucleus
  • 2.13.1.4.
  • Nucleation in a Regular Solution
  • 2.13.1.5.
  • Regular Solution Approximation
  • Applicability Region of Classical Theory
  • 2.13.2.
  • Discrete Lattice Point Theory
  • 2.14.
  • Modifications of Homogeneous Nucleation Kinetics by Anisotropic Interfacial Energy
  • 2.14.1.
  • Equilibrium Shape Problem
  • 2.14.1.1.
  • Rudimentary Solution of the Equilibrium Shape Problem
  • 2.14.1.2.
  • 1.1.3.4.
  • γ -Plot and Some Properties
  • 2.14.1.3.
  • Wulff Construction
  • 2.14.1.4.
  • Simple Approach to Calculation of γ -Plots
  • 2.14.1.5.
  • Wulff Construction of Equilibrium Shape vs. Temperature in a Regular Solution, fcc Miscibility Gap
  • 2.14.2.
  • Sphere Faceted at One Boundary Orientation
  • 2.14.2.1.
  • Subregular and Other-Type Solutions
  • γ -Plot and Force Balance
  • 2.14.2.2.
  • Calculation of r* and Δ G
  • 2.14.2.3.
  • Calculation of β *
  • 2.14.2.4.
  • Calculation of Zeldovich Factor. Z, and Incubation Time. τ
  • 2.14.3.
  • Nonspherical Critical Nucleus Shapes with a Finite Number of Interfacial Energies and Analytically Describable Interlaces
  • 2.15.
  • Chapter 1.
  • 1.1.3.5.
  • Nucleation Kinetics at the Faces of Disordered Grain Boundaries
  • 2.15.1.
  • Introductory Comments on Grain Boundary Geometry, and Structure
  • 2.15.2.
  • Equilibrium Shape Problem at Grain Boundaries
  • 2.15.3.
  • Shape-Dependent Nucleation Kinetics Factors for the Two Spherical Cap Nucleus with Isotropic -yo
  • 2.15.3.1.
  • Δ G* and R*
  • 2.15.3.2.
  • Relationships for Partial Molar Free Energies, Phase Equilibria, and Critical Temperature
  • β *, Z, T, and Transport by Interfacial Diffusion
  • 2.15.4.
  • Nucleation Kinetics of the Double Spherical Cap Faceted at One Boundary Orientation
  • 2.15.4.1.
  • When &phi; < or equal to &phi; c1 and &gamma; c&alpha; &beta; > 'Y&beta; &beta; /2
  • 2.15.4.2.
  • Two-Dimensional Nuclei
  • 2.15.4.3.
  • Three-Dimensional Nuclei When &phi; > &phi; c1
  • 2.16.
  • 1.1.3.6.
  • Comparative Nucleation Kinetics at Grain Faces, Edges, and Corners Relative to Homogeneous Nucleation: Trade-Offs between N and &Delta; G* When &gamma; &alpha; &beta; Is Isotropic
  • 2.17.
  • Nucleation at Dislocations
  • 2.17.1.
  • Incoherent Nucleation
  • 2.17.1.1.
  • Cahn Treatment
  • 2.17.1.2.
  • Gomez-Ramirez and Pound Treatment
  • 2.17.2.
  • Comparison between Regular Solutions and Nonregular Solutions
  • Coherent Nucleation
  • 2.18.
  • Comparisons of Theory and Experiment
  • 2.18.1.
  • Homogeneous Nucleation
  • 2.18.1.1.
  • Homogeneous Nucleation of Co-Rich Precipitates in Cu-Rich Cu Co Alloys
  • 2.18.1.2.
  • Homogeneous Nucleation of Ni3Al Precipitates in Ni-Rich Ni Al Alloys
  • 2.18.1.3.
  • 1.2.
  • Homogeneous Nucleation in Liquids
  • 2.18.2.
  • Nucleation at Grain Boundaries
  • 2.18.2.1.
  • Nucleation of Proeutectoid Ferrite at Austenite Grain Boundaries in Fe C Alloys
  • 2.18.3.
  • Nucleation at Grain Faces vs. Grain Edges
  • 2.18.4.
  • Nucleation at Dislocations
  • 2.18.5.
  • Free Energy Composition Diagram and Applications to Driving Force Calculations
  • Secondary Sideplate Selectivity
  • References
  • Chapter 3.
  • Diffusional Growth
  • 3.1.
  • Basic Differences between Diffusional Nucleation and Diffusional Growth
  • 3.2.
  • General Theory of Precipitate Morphology
  • 3.3.
  • Disordered Interphase Boundaries
  • 1.2.1.
  • 3.3.1.
  • Introduction
  • 3.3.2.
  • Volume Diffusion Controlled Growth Kinetics
  • 3.3.2.1.
  • Mathematics for Diffusion and Flux Equations
  • 3.3.2.2.
  • Comparisons with Experiment
  • 3.3.3.
  • Growth Faster than Volume Diffusion Control Allows
  • Some Considerations on the Free Energy vs. Composition Curve
  • 3.3.3.1.
  • Grain Boundary Allotriomorphs --
  • 1.2.2.
  • Total Free Energy Change Attending Precipitation
  • Applied Thermodynamics
  • 1.2.3.
  • Free Energy Change Attending the Precipitation of a Small Amount of oc
  • 1.2.4.
  • Division of the Total Free Energy Change between Capillarity and Diffusion
  • 1.2.5.
  • Influence of Capillarity upon Solubility
  • 1.2.6.
  • Division of AG between Diffusion and Uniform Interfacial Reaction
  • 1.2.7.
  • Permissible Range of Nonequilihrium Precipitate Compositions
  • 1.1.
  • 1.3.
  • Thermodynamics of Interstitial Solid Solutions through Application to the Proeutectoid Ferrite Reaction in Fe C Alloys
  • 1.3.1.
  • Introduction
  • 1.3.2.
  • Free Energy and Positional Entropy of Ideal Interstitial Solid Solutions
  • 1.3.3.
  • Free Energy and Positional Entropy of Nonideal Interstitial Solid Solution
  • 1.3.4.
  • Evaluation of Constants in a Partial Molar Free Energy Equation
  • Free Energy Composition Relationships for Binary Substitutional Solid Solutions
  • 1.3.5.
  • Application of Partial Molar Free Energy Equations
  • 1.3.5.1.
  • Calculation of the 'Oa +-y) or Ae3 Phase Boundary
  • 1.3.5.2.
  • Driving Force for the Massive Transformation in Fe C Alloys
  • 1.3.5.3.
  • Driving Force for the Precipitation of Proeutectoid Ferrite
  • 1.3.5.4.
  • Graphical Presentations of the Results of Sections 1.3.5.1 through 1.3.5.3
  • 1.1.1.
  • 1.3.6.
  • Interpretation of z in Terms of Carbon Carbon Interaction Energy
  • 1.3.7.
  • More Sophisticated Treatments of Interstitial Statistical Thermodynamics
  • References
  • Chapter 2.
  • Diffusional Nucleation in Solid Solid Transformations
  • 2.1.
  • Introduction through Qualitative General Statements
  • 2.2.
  • Basic Free Energy Composition Relationship
  • Brief Comparative Survey of Nucleation in the Four Basic Types of Phase Transformation
  • 2.2.1.
  • Vapor-to-Liquid Transformation
  • 2.2.2.
  • Vapor-to-Solid Transformation
  • 2.2.3.
  • Liquid-to-Solid Transformation (Solidification)
  • 2.2.4.
  • Solid-to-Solid Transformation
  • 2.2.5.
  • 1.1.2.
  • General Remarks
  • 2.3.
  • Outline of Approach for Development of Nucleation Theory
  • 2.4.
  • Proof That the Equilibrium Concentration of Critical Nuclei Is Proportional to exp( &Delta; G*AT)
  • 2.5.
  • Fictitious Equilibrium Nucleation Rate
  • 2.6.
  • Derivation of Steady-State Nucleation Rate
  • 2.7.
  • Gibbs Free Energy of the Standard States of Pure Elements
  • Estimation of &beta; *
  • 2.8.
  • Time-Dependent Nucleation Rate
  • 2.9.
  • Feder et al.'s Treatment of T
  • 2.9.1.
  • Relationships for 8 and form
  • 2.9.2.
  • Relationship for
  • 2.9.3.
  • 3.4.1.
  • Stacking Fault Nucleation and Edgewise Growth
  • 4.5.4.3.
  • Nucleation on Displaced and Freshly Generated Dislocations
  • 4.3.5.
  • Nucleation at Point Defect Clusters
  • 4.5.6.
  • Nucleation on Precipitates
  • 4.5.6.1.
  • Nucleation on Precipitates of a Different Phase
  • 4.5.6.2.
  • Introduction
  • Sympathetic Nucleation
  • 4.6.
  • Successive Reactions Involving Different Phases
  • 4.7.
  • Precipitate Free Zones
  • 4.8.
  • Coarsening (Ostwald Ripening)
  • 4.9.
  • Overall Evolution of the Microstructure
  • 4.9.1.
  • 3.4.2.
  • Effects of the Ratio of Growth Rates of Disordered-to-Partially Coherent Boundaries
  • 4.9.2.
  • Effects of Diffusion Distance-to-Matrix Grain Radius Ratio
  • 4.9.3.
  • Effects of the Lever Rule and of Nucleation-to-Growth Rate Ratio
  • References
  • Chapter 5.
  • Massive Transformation
  • 5.1.
  • Definition and History
  • Misfit Dislocations at Partially Coherent Interphase Boundaries
  • 5.2.
  • Phase Diagrams
  • 5.3.
  • Thermodynamics
  • 5.3.1.
  • Free Energy Composition Diagram
  • 5.3.2.
  • Experimental Evaluation of Enthalpy Change Associated with Massive Reaction
  • 5.4.
  • Overall Reaction Kinetics and the Existence Range
  • 3.4.2.1.
  • 5.5.
  • Nucleation of Massive Transformation
  • 5.5.1.
  • Nucleation during Continuous Cooling
  • 5.5.2.
  • Nucleation during Isothermal Transformation
  • 5.5.3.
  • Nucleation Sites and Massive Crystal Morphology
  • 5.6.
  • Growth Kinetics
  • Theory
  • 5.6.1.
  • Theory
  • 5.6.1.1.
  • Disordered Interphase Boundaries
  • 5.6.1.2.
  • Partially Coherent Interphase Boundaries
  • 5.6.2.
  • Comparison with Experiment
  • 5.7.
  • Interfacial Structure, Habit Planes, Orientation Relationships, and Growth Mechanisms
  • 3.4.2.2.
  • 5.8.
  • Note on the Driving Force for Trans-Interphase Boundary Diffusion during Massive Transformation in a Two-Phase Field
  • References
  • Chapter 6.
  • Cellular Reaction
  • 6.1.
  • Definition and Introduction
  • 6.2.
  • Systematics of Cellular Reactions
  • 6.3.
  • Comparisons of Theory and Experiment
  • Nucleation of Cellular Reactions
  • 6.3.1.
  • Crystallography-Based Mechanisms
  • 6.3.1.1.
  • Tu Turnbull Replacive Mechanism
  • 6.3.1.2.
  • Proposals of Aaronson and Aaron
  • 6.3.2.
  • Noncrystallographic Mechanism of Fournelle and Clark
  • 6.3.3.
  • 3.4.3.
  • Other Mechanisms for Inducing Grain Boundary Motion before and during Cellular Reaction, Including DIGM
  • 6.4.
  • Growth Kinetics of Cells
  • 6.4.1.
  • Introductory Comments
  • 6.4.2.
  • Turnbull Theory of Cell Growth Kinetics
  • 6.4.3.
  • Cahn Theory of Cell Growth Kinetics
  • 6.4.4.
  • Acquisition of the Misfit Dislocation Structure of Partially Coherent Interphase Boundaries
  • Comparisons with the Experiment of the Turnbull and Cahn Theories
  • 6.4.5.
  • Hillert Theory of Growth Kinetics
  • 6.4.6.
  • Volume versus Boundary Diffusion Control and Interactions with Continuous Precipitation
  • References
  • Chapter 7.
  • Pearlite Reaction
  • 7.1.
  • Systematics
  • 3.3.3.2.
  • 3.4.3.1.
  • 7.1.1.
  • Definition
  • 7.1.2.
  • Pearlite in the Context of Eutectoid Decomposition Products
  • 7.1.3.
  • Occurrence of Pearlite
  • 7.1.3.1.
  • In Steel
  • 7.1.3.2.
  • In Other Alloy Systems
  • Theory
  • 7.1.4.
  • Preliminary Discussion of Pearlite Nucleation
  • 7.1.5.
  • Morphology of Pearlite
  • 7.2.
  • Crystallography, Nucleation, and Growth Mechanisms
  • 7.2.1.
  • Hull and Mehl Concept
  • 7.2.2.
  • Hillert Concept
  • 3.4.3.2.
  • 7.2.3.
  • Reprise
  • 7.3.
  • Edgewise Growth Kinetics of Pearlite
  • 7.3.1.
  • Comparative Thermodynamics with Cellular Reaction
  • 7.3.2.
  • Role of Growth in Pearlite Reaction
  • 7.3.3.
  • Approximate Treatments of Edgewise Growth
  • Comparisons of Theory with Experiment
  • 7.3.3.1.
  • Volume Diffusion Controlled Growth
  • 7.3.3.2.
  • Growth Controlled by Diffusion along Colony Boundary
  • 7.3.4.
  • Improved Treatments
  • 7.3.4.1.
  • Volume Diffusion Controlled Growth
  • 7.3.4.2.
  • Boundary Diffusion Controlled Growth
  • 3.4.4.
  • 7.3.5.
  • Experimental Measurements lin- Growth Kinetics Studies
  • 7.3.5.1.
  • Interlamel lar Spacing
  • 7.3.5.2.
  • Rate of Growth
  • 7.3.6.
  • Comparisons of Theory and Experiment and the Problem of S
  • References
  • Chapter 8.
  • Growth Ledges at Partially and Fully Coherent Interphase Boundaries
  • Martcnsitic Transformations
  • 8.1.
  • Definition
  • 8.2.
  • Salient Characteristics (Described Briefly)
  • 8.2.1.
  • Crystallography
  • 8.2.2.
  • Morphology.
  • 8.2.3.
  • 3.4.4.1.
  • Surface Relief Effect
  • 8.2.4.
  • Time-Dependence of Martensite Formation
  • 8.2.5.
  • Temperature Dependence of Martensite Formation
  • 8.2.6.
  • Reversibility
  • 8.2.7.
  • Influence of Applied Stress
  • 8.2.8.
  • Prevalence and Role in Interface Crystallography
  • Thermal Stabilization
  • 8.3.
  • Thermodynamics of Martensite Transformation
  • 8.3.1.
  • To Temperature
  • 8.3.2.
  • Difference between To and Ms
  • 8.4.
  • Overall Kinetics of Martensite Transformation
  • 8.4.1.
  • 3.4.4.2.
  • Qualitative Kinetics
  • 8.4.2.
  • Quantitative Kinetics
  • 8.4.2.1.
  • Anisothermal Martensite Formation
  • 8.4.2.2.
  • Isothermal Martensite Formation
  • 8.5.
  • Nucleation of Martensite
  • 8.6.
  • Visibility Conditions for Ledges
  • Crystallography and Growth (or Propagation) of Martensite
  • 8.6.1.
  • Physics of Phenomenological Theory of Martensite Crystallography
  • 8.6.2.
  • Comparisons with Experiment
  • References
  • Chapter 9.
  • Bainite Reaction and Role of Shear in Diffusional Phase Transformations
  • 9.1.
  • Introduction
  • Dissolution of Grain Boundary Allotriomorphs
  • 3.4.4.3.
  • 9.2.
  • Three Definitions of Bainite
  • 9.2.1.
  • Generalized Microstructural Definition
  • 9.2.2.
  • Kinetic Definition of Bainite
  • 9.2.3.
  • Surface Relief Definition of Bainite
  • 9.3.
  • Upper Bainite versus Lower Bainite, and Inverse Bainite
  • Sources of Ledges
  • 9.4.
  • Sources of Carbide Precipitation
  • References
  • 3.4.4.4.
  • Ledge Heights
  • 3.4.4.5.
  • Inter-Ledge Spacings
  • 3.4.5.
  • Structural Ledges at Partially Coherent Interphase Boundaries
  • 3.4.6.
  • Migration of Partially and Fully Coherent Interphase Boundaries by Growth Ledges
  • 3.3.3.3.
  • 3.4.6.1.
  • Theory
  • 3.4.6.2.
  • Comparison of Theory and Experiment for Growth of Ledged Interphase Boundaries
  • 3.5.
  • Relative Growth Kinetics of Disordered and Partially Coherent Interphase Boundaries
  • References
  • Chapter 4.
  • Precipitation
  • 4.1.
  • Plate Lengthening
  • Introduction
  • 4.2.
  • Metastable Equilibrium Phase Boundaries
  • 4.2.1.
  • Types of Metastable Equilibrium Phases
  • 4.2.2.
  • Calculation of Metastable Equilibrium Phase Boundaries
  • 4.3.
  • GP Zones
  • 4.3.1.
  • 3.3.4.
  • Definition
  • 4.3.2.
  • Early History and Methods of Experimental Detection
  • 4.3.3.
  • GP Zone Solvus Curves
  • 4.3.4.
  • Description of GP Zones: Morphology, Size, Number Density, and Composition
  • 4.3.5.
  • Kinetics of GP Zone Formation
  • 4.3.6.
  • Growth Slower than Volume Diffusion Control Allows
  • Origins of GP Zone Formation
  • 4.4.
  • Transition Phases
  • 4.4.1.
  • Definition and Basic Characteristic
  • 4.4.2.
  • Occurrence and Thermodynamics
  • 4.4.3.
  • Crystallography
  • 4.4.4.
  • 3.4.
  • Nucleation Sequence of Transition Phases
  • 4.4.4.1.
  • From the Viewpoint of &Delta; G.
  • 4.4.4.2.
  • From the Viewpoint of Interfacial Energy
  • 4.4.4.3.
  • Nucleation Sites of Successive Transition Phases.
  • 4.5.
  • Nucleation Sites
  • 4.5.1.
  • Partially and Fully Coherent Interphase Boundaries
  • Homogeneous Nucleation
  • 4.5.2.
  • Nucleation at Large-Angle Grain
  • 4.5.3.
  • Nucleation Kinetics at Small-Angle Boundaries
  • 4.5.4.
  • Nucleation at Dislocations
  • 4.5.4.1.
  • General Remarks
  • 4.5.4.2.
Dimensions
27 cm.
Extent
xvii, 667 p.
Isbn
9781420062991
Isbn Type
(hardcover : alk. paper)
Lccn
2009049469
Other physical details
ill.
System control number
  • (CaMWU)u2123190-01umb_inst
  • 2162615
  • (Sirsi) i9781420062991
  • (OCoLC)154683851
Label
Mechanisms of diffusional phase transformations in metals and alloys, Hubert I. Aaronson, Masato Enomoto, Jong K. Lee
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • 1.1.3.
  • Total Value of T
  • 2.10.
  • Time-Dependent Nucleation Rate for Homogeneous Nucleation with Isotropic y
  • 2.10.1.
  • Introduction
  • 2.10.2.
  • Activation Energy of Nucleation &Delta; G*
  • 2.10.2.1.
  • Introduction to the Critical Nucleus Shape Problem
  • 2.10.2.2.
  • Mixing Free Energy, &Delta; GM
  • G x Diagram Approach
  • 2.10.2.3.
  • Introduction to the Volume Strain Energy Incorporation Problem
  • 2.10.2.4.
  • Conventional Gibbsian Approach
  • 2.10.2.5.
  • Wulff Volume Approach for &Delta; G*
  • 2.10.2.6.
  • Nucleus Volume Approach for &Delta; G*
  • 2.10.3.
  • 1.1.3.1.
  • Frequency Factor &beta; *
  • 2.10.4.
  • Zeldovich Factor, Incubation Time and the Re-Derivation of Frequency Factor
  • 2.10.5.
  • Nucleation Site Density, N
  • 2.10.6.
  • Time-Dependent Nucleation Rate
  • 2.11.
  • Ancillary Parameters
  • 2.11.1.
  • Fundamentals
  • Volume Diffusivity
  • 2.11.2.
  • Volume Free Energy Change
  • 2.11.3.
  • Volume Strain Energy
  • 2.11.3.1.
  • Elementary Calculation of Dilatational Strain Energy for a Plate-Shaped Nucleus
  • 2.11.3.2.
  • Volume Strain Energy of Fully Coherent Precipitates
  • 2.11.3.3.
  • 1.1.3.2.
  • Volume Strain Energy of Incoherent Precipitates
  • 2.11.3.4.
  • Volume Shear Strain Energy
  • 2.11.3.5.
  • Unsolved Major Problems in Volume Strain Energy
  • 2.11.4.
  • Interfacial Energy
  • 2.11.4.1.
  • Scope
  • 2.11.4.2.
  • Ideal Solution Approximation
  • Energy of Coherent Interphase Boundaries
  • 2.11.4.3.
  • Energy of Partially Coherent Interphase Boundaries
  • 2.11.4.4.
  • Energy of Disordered Interphase Boundaries
  • 2.12.
  • Preliminary Consideration of the Approximation for &beta; = &Delta; G, / + W
  • 2.13.
  • Nonclassical Nucleation Theory
  • 2.13.1.
  • 1.1.3.3.
  • Continuum Theory
  • 2.13.1.1.
  • General Introduction
  • 2.13.1.2.
  • Calculation of the Nonclassical &Delta; G*
  • 2.13.1.3.
  • General Properties of the Critical Nucleus
  • 2.13.1.4.
  • Nucleation in a Regular Solution
  • 2.13.1.5.
  • Regular Solution Approximation
  • Applicability Region of Classical Theory
  • 2.13.2.
  • Discrete Lattice Point Theory
  • 2.14.
  • Modifications of Homogeneous Nucleation Kinetics by Anisotropic Interfacial Energy
  • 2.14.1.
  • Equilibrium Shape Problem
  • 2.14.1.1.
  • Rudimentary Solution of the Equilibrium Shape Problem
  • 2.14.1.2.
  • 1.1.3.4.
  • &gamma; -Plot and Some Properties
  • 2.14.1.3.
  • Wulff Construction
  • 2.14.1.4.
  • Simple Approach to Calculation of &gamma; -Plots
  • 2.14.1.5.
  • Wulff Construction of Equilibrium Shape vs. Temperature in a Regular Solution, fcc Miscibility Gap
  • 2.14.2.
  • Sphere Faceted at One Boundary Orientation
  • 2.14.2.1.
  • Subregular and Other-Type Solutions
  • &gamma; -Plot and Force Balance
  • 2.14.2.2.
  • Calculation of r* and &Delta; G
  • 2.14.2.3.
  • Calculation of &beta; *
  • 2.14.2.4.
  • Calculation of Zeldovich Factor. Z, and Incubation Time. &tau;
  • 2.14.3.
  • Nonspherical Critical Nucleus Shapes with a Finite Number of Interfacial Energies and Analytically Describable Interlaces
  • 2.15.
  • Chapter 1.
  • 1.1.3.5.
  • Nucleation Kinetics at the Faces of Disordered Grain Boundaries
  • 2.15.1.
  • Introductory Comments on Grain Boundary Geometry, and Structure
  • 2.15.2.
  • Equilibrium Shape Problem at Grain Boundaries
  • 2.15.3.
  • Shape-Dependent Nucleation Kinetics Factors for the Two Spherical Cap Nucleus with Isotropic -yo
  • 2.15.3.1.
  • &Delta; G* and R*
  • 2.15.3.2.
  • Relationships for Partial Molar Free Energies, Phase Equilibria, and Critical Temperature
  • &beta; *, Z, T, and Transport by Interfacial Diffusion
  • 2.15.4.
  • Nucleation Kinetics of the Double Spherical Cap Faceted at One Boundary Orientation
  • 2.15.4.1.
  • When &phi; < or equal to &phi; c1 and &gamma; c&alpha; &beta; > 'Y&beta; &beta; /2
  • 2.15.4.2.
  • Two-Dimensional Nuclei
  • 2.15.4.3.
  • Three-Dimensional Nuclei When &phi; > &phi; c1
  • 2.16.
  • 1.1.3.6.
  • Comparative Nucleation Kinetics at Grain Faces, Edges, and Corners Relative to Homogeneous Nucleation: Trade-Offs between N and &Delta; G* When &gamma; &alpha; &beta; Is Isotropic
  • 2.17.
  • Nucleation at Dislocations
  • 2.17.1.
  • Incoherent Nucleation
  • 2.17.1.1.
  • Cahn Treatment
  • 2.17.1.2.
  • Gomez-Ramirez and Pound Treatment
  • 2.17.2.
  • Comparison between Regular Solutions and Nonregular Solutions
  • Coherent Nucleation
  • 2.18.
  • Comparisons of Theory and Experiment
  • 2.18.1.
  • Homogeneous Nucleation
  • 2.18.1.1.
  • Homogeneous Nucleation of Co-Rich Precipitates in Cu-Rich Cu Co Alloys
  • 2.18.1.2.
  • Homogeneous Nucleation of Ni3Al Precipitates in Ni-Rich Ni Al Alloys
  • 2.18.1.3.
  • 1.2.
  • Homogeneous Nucleation in Liquids
  • 2.18.2.
  • Nucleation at Grain Boundaries
  • 2.18.2.1.
  • Nucleation of Proeutectoid Ferrite at Austenite Grain Boundaries in Fe C Alloys
  • 2.18.3.
  • Nucleation at Grain Faces vs. Grain Edges
  • 2.18.4.
  • Nucleation at Dislocations
  • 2.18.5.
  • Free Energy Composition Diagram and Applications to Driving Force Calculations
  • Secondary Sideplate Selectivity
  • References
  • Chapter 3.
  • Diffusional Growth
  • 3.1.
  • Basic Differences between Diffusional Nucleation and Diffusional Growth
  • 3.2.
  • General Theory of Precipitate Morphology
  • 3.3.
  • Disordered Interphase Boundaries
  • 1.2.1.
  • 3.3.1.
  • Introduction
  • 3.3.2.
  • Volume Diffusion Controlled Growth Kinetics
  • 3.3.2.1.
  • Mathematics for Diffusion and Flux Equations
  • 3.3.2.2.
  • Comparisons with Experiment
  • 3.3.3.
  • Growth Faster than Volume Diffusion Control Allows
  • Some Considerations on the Free Energy vs. Composition Curve
  • 3.3.3.1.
  • Grain Boundary Allotriomorphs --
  • 1.2.2.
  • Total Free Energy Change Attending Precipitation
  • Applied Thermodynamics
  • 1.2.3.
  • Free Energy Change Attending the Precipitation of a Small Amount of oc
  • 1.2.4.
  • Division of the Total Free Energy Change between Capillarity and Diffusion
  • 1.2.5.
  • Influence of Capillarity upon Solubility
  • 1.2.6.
  • Division of AG between Diffusion and Uniform Interfacial Reaction
  • 1.2.7.
  • Permissible Range of Nonequilihrium Precipitate Compositions
  • 1.1.
  • 1.3.
  • Thermodynamics of Interstitial Solid Solutions through Application to the Proeutectoid Ferrite Reaction in Fe C Alloys
  • 1.3.1.
  • Introduction
  • 1.3.2.
  • Free Energy and Positional Entropy of Ideal Interstitial Solid Solutions
  • 1.3.3.
  • Free Energy and Positional Entropy of Nonideal Interstitial Solid Solution
  • 1.3.4.
  • Evaluation of Constants in a Partial Molar Free Energy Equation
  • Free Energy Composition Relationships for Binary Substitutional Solid Solutions
  • 1.3.5.
  • Application of Partial Molar Free Energy Equations
  • 1.3.5.1.
  • Calculation of the 'Oa +-y) or Ae3 Phase Boundary
  • 1.3.5.2.
  • Driving Force for the Massive Transformation in Fe C Alloys
  • 1.3.5.3.
  • Driving Force for the Precipitation of Proeutectoid Ferrite
  • 1.3.5.4.
  • Graphical Presentations of the Results of Sections 1.3.5.1 through 1.3.5.3
  • 1.1.1.
  • 1.3.6.
  • Interpretation of z in Terms of Carbon Carbon Interaction Energy
  • 1.3.7.
  • More Sophisticated Treatments of Interstitial Statistical Thermodynamics
  • References
  • Chapter 2.
  • Diffusional Nucleation in Solid Solid Transformations
  • 2.1.
  • Introduction through Qualitative General Statements
  • 2.2.
  • Basic Free Energy Composition Relationship
  • Brief Comparative Survey of Nucleation in the Four Basic Types of Phase Transformation
  • 2.2.1.
  • Vapor-to-Liquid Transformation
  • 2.2.2.
  • Vapor-to-Solid Transformation
  • 2.2.3.
  • Liquid-to-Solid Transformation (Solidification)
  • 2.2.4.
  • Solid-to-Solid Transformation
  • 2.2.5.
  • 1.1.2.
  • General Remarks
  • 2.3.
  • Outline of Approach for Development of Nucleation Theory
  • 2.4.
  • Proof That the Equilibrium Concentration of Critical Nuclei Is Proportional to exp( &Delta; G*AT)
  • 2.5.
  • Fictitious Equilibrium Nucleation Rate
  • 2.6.
  • Derivation of Steady-State Nucleation Rate
  • 2.7.
  • Gibbs Free Energy of the Standard States of Pure Elements
  • Estimation of &beta; *
  • 2.8.
  • Time-Dependent Nucleation Rate
  • 2.9.
  • Feder et al.'s Treatment of T
  • 2.9.1.
  • Relationships for 8 and form
  • 2.9.2.
  • Relationship for
  • 2.9.3.
  • 3.4.1.
  • Stacking Fault Nucleation and Edgewise Growth
  • 4.5.4.3.
  • Nucleation on Displaced and Freshly Generated Dislocations
  • 4.3.5.
  • Nucleation at Point Defect Clusters
  • 4.5.6.
  • Nucleation on Precipitates
  • 4.5.6.1.
  • Nucleation on Precipitates of a Different Phase
  • 4.5.6.2.
  • Introduction
  • Sympathetic Nucleation
  • 4.6.
  • Successive Reactions Involving Different Phases
  • 4.7.
  • Precipitate Free Zones
  • 4.8.
  • Coarsening (Ostwald Ripening)
  • 4.9.
  • Overall Evolution of the Microstructure
  • 4.9.1.
  • 3.4.2.
  • Effects of the Ratio of Growth Rates of Disordered-to-Partially Coherent Boundaries
  • 4.9.2.
  • Effects of Diffusion Distance-to-Matrix Grain Radius Ratio
  • 4.9.3.
  • Effects of the Lever Rule and of Nucleation-to-Growth Rate Ratio
  • References
  • Chapter 5.
  • Massive Transformation
  • 5.1.
  • Definition and History
  • Misfit Dislocations at Partially Coherent Interphase Boundaries
  • 5.2.
  • Phase Diagrams
  • 5.3.
  • Thermodynamics
  • 5.3.1.
  • Free Energy Composition Diagram
  • 5.3.2.
  • Experimental Evaluation of Enthalpy Change Associated with Massive Reaction
  • 5.4.
  • Overall Reaction Kinetics and the Existence Range
  • 3.4.2.1.
  • 5.5.
  • Nucleation of Massive Transformation
  • 5.5.1.
  • Nucleation during Continuous Cooling
  • 5.5.2.
  • Nucleation during Isothermal Transformation
  • 5.5.3.
  • Nucleation Sites and Massive Crystal Morphology
  • 5.6.
  • Growth Kinetics
  • Theory
  • 5.6.1.
  • Theory
  • 5.6.1.1.
  • Disordered Interphase Boundaries
  • 5.6.1.2.
  • Partially Coherent Interphase Boundaries
  • 5.6.2.
  • Comparison with Experiment
  • 5.7.
  • Interfacial Structure, Habit Planes, Orientation Relationships, and Growth Mechanisms
  • 3.4.2.2.
  • 5.8.
  • Note on the Driving Force for Trans-Interphase Boundary Diffusion during Massive Transformation in a Two-Phase Field
  • References
  • Chapter 6.
  • Cellular Reaction
  • 6.1.
  • Definition and Introduction
  • 6.2.
  • Systematics of Cellular Reactions
  • 6.3.
  • Comparisons of Theory and Experiment
  • Nucleation of Cellular Reactions
  • 6.3.1.
  • Crystallography-Based Mechanisms
  • 6.3.1.1.
  • Tu Turnbull Replacive Mechanism
  • 6.3.1.2.
  • Proposals of Aaronson and Aaron
  • 6.3.2.
  • Noncrystallographic Mechanism of Fournelle and Clark
  • 6.3.3.
  • 3.4.3.
  • Other Mechanisms for Inducing Grain Boundary Motion before and during Cellular Reaction, Including DIGM
  • 6.4.
  • Growth Kinetics of Cells
  • 6.4.1.
  • Introductory Comments
  • 6.4.2.
  • Turnbull Theory of Cell Growth Kinetics
  • 6.4.3.
  • Cahn Theory of Cell Growth Kinetics
  • 6.4.4.
  • Acquisition of the Misfit Dislocation Structure of Partially Coherent Interphase Boundaries
  • Comparisons with the Experiment of the Turnbull and Cahn Theories
  • 6.4.5.
  • Hillert Theory of Growth Kinetics
  • 6.4.6.
  • Volume versus Boundary Diffusion Control and Interactions with Continuous Precipitation
  • References
  • Chapter 7.
  • Pearlite Reaction
  • 7.1.
  • Systematics
  • 3.3.3.2.
  • 3.4.3.1.
  • 7.1.1.
  • Definition
  • 7.1.2.
  • Pearlite in the Context of Eutectoid Decomposition Products
  • 7.1.3.
  • Occurrence of Pearlite
  • 7.1.3.1.
  • In Steel
  • 7.1.3.2.
  • In Other Alloy Systems
  • Theory
  • 7.1.4.
  • Preliminary Discussion of Pearlite Nucleation
  • 7.1.5.
  • Morphology of Pearlite
  • 7.2.
  • Crystallography, Nucleation, and Growth Mechanisms
  • 7.2.1.
  • Hull and Mehl Concept
  • 7.2.2.
  • Hillert Concept
  • 3.4.3.2.
  • 7.2.3.
  • Reprise
  • 7.3.
  • Edgewise Growth Kinetics of Pearlite
  • 7.3.1.
  • Comparative Thermodynamics with Cellular Reaction
  • 7.3.2.
  • Role of Growth in Pearlite Reaction
  • 7.3.3.
  • Approximate Treatments of Edgewise Growth
  • Comparisons of Theory with Experiment
  • 7.3.3.1.
  • Volume Diffusion Controlled Growth
  • 7.3.3.2.
  • Growth Controlled by Diffusion along Colony Boundary
  • 7.3.4.
  • Improved Treatments
  • 7.3.4.1.
  • Volume Diffusion Controlled Growth
  • 7.3.4.2.
  • Boundary Diffusion Controlled Growth
  • 3.4.4.
  • 7.3.5.
  • Experimental Measurements lin- Growth Kinetics Studies
  • 7.3.5.1.
  • Interlamel lar Spacing
  • 7.3.5.2.
  • Rate of Growth
  • 7.3.6.
  • Comparisons of Theory and Experiment and the Problem of S
  • References
  • Chapter 8.
  • Growth Ledges at Partially and Fully Coherent Interphase Boundaries
  • Martcnsitic Transformations
  • 8.1.
  • Definition
  • 8.2.
  • Salient Characteristics (Described Briefly)
  • 8.2.1.
  • Crystallography
  • 8.2.2.
  • Morphology.
  • 8.2.3.
  • 3.4.4.1.
  • Surface Relief Effect
  • 8.2.4.
  • Time-Dependence of Martensite Formation
  • 8.2.5.
  • Temperature Dependence of Martensite Formation
  • 8.2.6.
  • Reversibility
  • 8.2.7.
  • Influence of Applied Stress
  • 8.2.8.
  • Prevalence and Role in Interface Crystallography
  • Thermal Stabilization
  • 8.3.
  • Thermodynamics of Martensite Transformation
  • 8.3.1.
  • To Temperature
  • 8.3.2.
  • Difference between To and Ms
  • 8.4.
  • Overall Kinetics of Martensite Transformation
  • 8.4.1.
  • 3.4.4.2.
  • Qualitative Kinetics
  • 8.4.2.
  • Quantitative Kinetics
  • 8.4.2.1.
  • Anisothermal Martensite Formation
  • 8.4.2.2.
  • Isothermal Martensite Formation
  • 8.5.
  • Nucleation of Martensite
  • 8.6.
  • Visibility Conditions for Ledges
  • Crystallography and Growth (or Propagation) of Martensite
  • 8.6.1.
  • Physics of Phenomenological Theory of Martensite Crystallography
  • 8.6.2.
  • Comparisons with Experiment
  • References
  • Chapter 9.
  • Bainite Reaction and Role of Shear in Diffusional Phase Transformations
  • 9.1.
  • Introduction
  • Dissolution of Grain Boundary Allotriomorphs
  • 3.4.4.3.
  • 9.2.
  • Three Definitions of Bainite
  • 9.2.1.
  • Generalized Microstructural Definition
  • 9.2.2.
  • Kinetic Definition of Bainite
  • 9.2.3.
  • Surface Relief Definition of Bainite
  • 9.3.
  • Upper Bainite versus Lower Bainite, and Inverse Bainite
  • Sources of Ledges
  • 9.4.
  • Sources of Carbide Precipitation
  • References
  • 3.4.4.4.
  • Ledge Heights
  • 3.4.4.5.
  • Inter-Ledge Spacings
  • 3.4.5.
  • Structural Ledges at Partially Coherent Interphase Boundaries
  • 3.4.6.
  • Migration of Partially and Fully Coherent Interphase Boundaries by Growth Ledges
  • 3.3.3.3.
  • 3.4.6.1.
  • Theory
  • 3.4.6.2.
  • Comparison of Theory and Experiment for Growth of Ledged Interphase Boundaries
  • 3.5.
  • Relative Growth Kinetics of Disordered and Partially Coherent Interphase Boundaries
  • References
  • Chapter 4.
  • Precipitation
  • 4.1.
  • Plate Lengthening
  • Introduction
  • 4.2.
  • Metastable Equilibrium Phase Boundaries
  • 4.2.1.
  • Types of Metastable Equilibrium Phases
  • 4.2.2.
  • Calculation of Metastable Equilibrium Phase Boundaries
  • 4.3.
  • GP Zones
  • 4.3.1.
  • 3.3.4.
  • Definition
  • 4.3.2.
  • Early History and Methods of Experimental Detection
  • 4.3.3.
  • GP Zone Solvus Curves
  • 4.3.4.
  • Description of GP Zones: Morphology, Size, Number Density, and Composition
  • 4.3.5.
  • Kinetics of GP Zone Formation
  • 4.3.6.
  • Growth Slower than Volume Diffusion Control Allows
  • Origins of GP Zone Formation
  • 4.4.
  • Transition Phases
  • 4.4.1.
  • Definition and Basic Characteristic
  • 4.4.2.
  • Occurrence and Thermodynamics
  • 4.4.3.
  • Crystallography
  • 4.4.4.
  • 3.4.
  • Nucleation Sequence of Transition Phases
  • 4.4.4.1.
  • From the Viewpoint of &Delta; G.
  • 4.4.4.2.
  • From the Viewpoint of Interfacial Energy
  • 4.4.4.3.
  • Nucleation Sites of Successive Transition Phases.
  • 4.5.
  • Nucleation Sites
  • 4.5.1.
  • Partially and Fully Coherent Interphase Boundaries
  • Homogeneous Nucleation
  • 4.5.2.
  • Nucleation at Large-Angle Grain
  • 4.5.3.
  • Nucleation Kinetics at Small-Angle Boundaries
  • 4.5.4.
  • Nucleation at Dislocations
  • 4.5.4.1.
  • General Remarks
  • 4.5.4.2.
Dimensions
27 cm.
Extent
xvii, 667 p.
Isbn
9781420062991
Isbn Type
(hardcover : alk. paper)
Lccn
2009049469
Other physical details
ill.
System control number
  • (CaMWU)u2123190-01umb_inst
  • 2162615
  • (Sirsi) i9781420062991
  • (OCoLC)154683851

Library Locations

  • Albert D. Cohen Management LibraryBorrow it
    181 Freedman Crescent, Winnipeg, MB, R3T 5V4, CA
    49.807878 -97.129961
  • Architecture/Fine Arts LibraryBorrow it
    84 Curry Place, Winnipeg, MB, CA
    49.807716 -97.136226
  • Archives and Special CollectionsBorrow it
    25 Chancellors Circle (Elizabeth Dafoe Library), Room 330, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Bibliothèque Alfred-Monnin (Université de Saint-Boniface)Borrow it
    200, avenue de la Cathédrale, Local 2110, Winnipeg, MB, R2H 0H7, CA
    49.888861 -97.119735
  • Bill Larson Library (Grace Hospital)Borrow it
    300 Booth Drive, G-227, Winnipeg, MB, R3J 3M7, CA
    49.882400 -97.276436
  • Carolyn Sifton - Helene Fuld Library (St. Boniface General Hospital)Borrow it
    409 Tache Avenue, Winnipeg, MB, R2H 2A6, CA
    49.883388 -97.126050
  • Concordia Hospital LibraryBorrow it
    1095 Concordia Avenue, Winnipeg, MB, R2K 3S8, CA
    49.913252 -97.064683
  • Donald W. Craik Engineering LibraryBorrow it
    75B Chancellors Circle (Engineering Building E3), Room 361, Winnipeg, MB, R3T 2N2, CA
    49.809053 -97.133292
  • E.K. Williams Law LibraryBorrow it
    224 Dysart Road, Winnipeg, MB, R3T 5V4, CA
    49.811829 -97.131017
  • Eckhardt-Gramatté Music LibraryBorrow it
    136 Dafoe Road (Taché Arts Complex), Room 257, Winnipeg, MB, R3T 2N2, CA
    49.807964 -97.132222
  • Elizabeth Dafoe LibraryBorrow it
    25 Chancellors Circle, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Fr. H. Drake Library (St. Paul's College)Borrow it
    70 Dysart Road, Winnipeg, MB, R3T 2M6, CA
    49.810605 -97.138184
  • J.W. Crane Memorial Library (Deer Lodge Centre)Borrow it
    2109 Portage Avenue, Winnipeg, MB, R3J 0L3, CA
    49.878000 -97.235520
  • Libraries Annex (not open to the public; please see web page for details)Borrow it
    25 Chancellors Circle (in the Elizabeth Dafoe Library), Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Neil John Maclean Health Sciences LibraryBorrow it
    727 McDermot Avenue (Brodie Centre), 200 Level, Winnipeg, MB, R3E 3P5, CA
    49.903563 -97.160554
  • Sciences and Technology LibraryBorrow it
    186 Dysart Road, Winnipeg, MB, R3T 2M8, CA
    49.811526 -97.133257
  • Seven Oaks General Hospital LibraryBorrow it
    2300 McPhillips Street, Winnipeg, MB, R2V 3M3, CA
    49.955177 -97.148865
  • Sister St. Odilon Library (Misericordia Health Centre)Borrow it
    99 Cornish Avenue, Winnipeg, MB, R3C 1A2, CA
    49.879592 -97.160425
  • St. John's College LibraryBorrow it
    92 Dysart Road, Winnipeg, MB, R3T 2M5, CA
    49.811242 -97.137156
  • Victoria General Hospital LibraryBorrow it
    2340 Pembina Highway, Winnipeg, MB, R3T 2E8, CA
    49.806755 -97.152739
  • William R Newman Library (Agriculture)Borrow it
    66 Dafoe Road, Winnipeg, MB, R3T 2R3, CA
    49.806936 -97.135525
Processing Feedback ...