The Resource Nonadiabatic transition : concepts, basic theories and applications, Hiroki Nakamura, (electronic resource)

Nonadiabatic transition : concepts, basic theories and applications, Hiroki Nakamura, (electronic resource)

Label
Nonadiabatic transition : concepts, basic theories and applications
Title
Nonadiabatic transition
Title remainder
concepts, basic theories and applications
Statement of responsibility
Hiroki Nakamura
Creator
Subject
Genre
Language
  • eng
  • eng
Summary
Nonadiabatic transition is a highly multidisciplinary concept and phenomenon, constituting a fundamental mechanism of state and phase changes in various dynamical processes of physics, chemistry and biology, such as molecular dynamics, energy relaxation, chemical reaction, and electron and proton transfer. Control of molecular processes by laser fields is also an example of time-dependent nonadiabatic transition. In this new edition, the original chapters are updated to facilitate enhanced understanding of the concept and applications. Three new chapters - comprehension of nonadiabatic chemica
Cataloging source
MiAaPQ
http://library.link/vocab/creatorName
Nakamura, Hiroki
Dewey number
530.474
Illustrations
  • illustrations
  • charts
Index
index present
Language note
English
LC call number
QC173
LC item number
.N35 2012
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/subjectName
  • Charge exchange
  • Phase transformations (Statistical physics)
Label
Nonadiabatic transition : concepts, basic theories and applications, Hiroki Nakamura, (electronic resource)
Instantiates
Publication
Note
Description based upon print version of record
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Content category
text
Content type code
  • txt
Contents
  • Preface to the First Edition; Preface to the Second Edition; Contents; Chapter 1. Introduction: What is "Nonadiabatic Transition"?; Chapter 2. Multi-Disciplinarity; 2.1 Physics; 2.2 Chemistry; 2.3 Biology; 2.4 Economics; Chapter 3. Historical Survey of Theoretical Studies; 3.1 Landau-Zener-Stueckelberg Theory; 3.2 Rosen-Zener-Demkov Theory; 3.3 Nikitin's Exponential Model; 3.4 Nonadiabatic Transition Due to Coriolis Coupling and Dynamical State Representation; Chapter 4. Background Mathematics; 4.1 Wentzel-Kramers-Brillouin Semiclassical Theory; 4.2 Stokes Phenomenon
  • Chapter 5. Basic Two-State Theory for Time-Independent Processes5.1 Exact Solutions of the Linear Curve Crossing Problems; 5.1.1 Landau-Zener type; 5.1.2 Nonadiabatic tunneling type; 5.2 Complete Semiclassical Solutions of General Curve Crossing Problems; 5.2.1 Landau-Zener (LZ) type; 5.2.1.1 E EX (b2 0); 5.2.1.2 E EX (b2 0); 5.2.1.3 Numerical examples; 5.2.2 Nonadiabatic Tunneling (NT) Type; 5.2.2.1 E Et (b2 -1); 5.2.2.2 Et E Eb (|b2| 1); 5.2.2.3 E Eb (b2 1); 5.2.2.4 Complete reflection; 5.2.2.5 Numerical examples; 5.3 Non-Curve-Crossing Case; 5.3.1 Rosen-Zener-Demkov model
  • 5.3.2 Diabatically avoided crossing model5.4 Exponential Potential Model: Unification of the Landau-Zener and Rosen-Zener Models; 5.4.1 Model 1 - Exact Solution; 5.4.2 Model 2 - Exact Solution; 5.4.3 Model 3 - Semiclassical Solution; 5.5 Mathematical Implications; 5.5.1 Case (i); 5.5.2 Case (ii); 5.5.3 Case (iii); Chapter 6. Basic Two-State Theory for Time-Dependent Processes; 6.1 Exact Solution of Quadratic Potential Problem; 6.2 Semiclassical Solution in General Case; 6.2.1 Two-crossing case: ß 0; 6.2.2 Diabatically avoided crossing case: ß 0; 6.3 Other Exactly Solvable Models
  • (i) Case I: δ = 0(ii) Case II: δ = .1/2; (iii) Case III: δ = 1/2; Chapter 7. Two-State Problems; 7.1 Diagrammatic Technique; 7.2 Inelastic Scattering; 7.3 Elastic Scattering with Resonances and Predissociation; 7.4 Perturbed Bound States; 7.5 Time-Dependent Periodic Crossing Problems; 7.6 Time-Dependent Nonlinear Equations Related to Bose-Einstein Condensate Problems; 7.7 Wave Packet Dynamics in a Linearly Chirped Laser Field; Chapter 8. Effects of Coupling to Phonons and Quantum Devices; 8.1 Effects of Coupling to Phonons; 8.2 Quantum Devices; Chapter 9. Multi-Channel Problems
  • 9.1 Exactly Solvable Models9.1.1 Time-independent case; 9.1.2 Time-dependent case; 9.2 Semiclassical Theory of Time-Independent Multi-Channel Problems; 9.2.1 General framework; 9.2.1.1 Case of no closed channel (m=0); 9.2.1.2 Case of m 0 at energies higher than the bottom of the highest adiabatic potential; 9.2.1.3 Case of m 0 at energies lower than the bottom of the highest adiabatic potential; 9.2.2 Numerical example; 9.3 Time-Dependent Problems; Chapter 10. Multi-Dimensional Problems; 10.1 Classification of Surface Crossing; 10.1.1 Crossing seam; 10.1.2 Conical intersection
  • 10.1.3 Renner-Teller effect
Dimensions
unknown
Edition
2nd ed.
Extent
1 online resource (515 p.)
Form of item
online
Isbn
9789814329781
Media category
computer
Media type code
  • c
Specific material designation
remote
System control number
  • (CKB)2550000000101553
  • (EBL)919067
  • (OCoLC)794328366
  • (SSID)ssj0000657697
  • (PQKBManifestationID)12285311
  • (PQKBTitleCode)TC0000657697
  • (PQKBWorkID)10656526
  • (PQKB)11507420
  • (MiAaPQ)EBC919067
  • (WSP)00002609
  • (EXLCZ)992550000000101553
Label
Nonadiabatic transition : concepts, basic theories and applications, Hiroki Nakamura, (electronic resource)
Publication
Note
Description based upon print version of record
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Content category
text
Content type code
  • txt
Contents
  • Preface to the First Edition; Preface to the Second Edition; Contents; Chapter 1. Introduction: What is "Nonadiabatic Transition"?; Chapter 2. Multi-Disciplinarity; 2.1 Physics; 2.2 Chemistry; 2.3 Biology; 2.4 Economics; Chapter 3. Historical Survey of Theoretical Studies; 3.1 Landau-Zener-Stueckelberg Theory; 3.2 Rosen-Zener-Demkov Theory; 3.3 Nikitin's Exponential Model; 3.4 Nonadiabatic Transition Due to Coriolis Coupling and Dynamical State Representation; Chapter 4. Background Mathematics; 4.1 Wentzel-Kramers-Brillouin Semiclassical Theory; 4.2 Stokes Phenomenon
  • Chapter 5. Basic Two-State Theory for Time-Independent Processes5.1 Exact Solutions of the Linear Curve Crossing Problems; 5.1.1 Landau-Zener type; 5.1.2 Nonadiabatic tunneling type; 5.2 Complete Semiclassical Solutions of General Curve Crossing Problems; 5.2.1 Landau-Zener (LZ) type; 5.2.1.1 E EX (b2 0); 5.2.1.2 E EX (b2 0); 5.2.1.3 Numerical examples; 5.2.2 Nonadiabatic Tunneling (NT) Type; 5.2.2.1 E Et (b2 -1); 5.2.2.2 Et E Eb (|b2| 1); 5.2.2.3 E Eb (b2 1); 5.2.2.4 Complete reflection; 5.2.2.5 Numerical examples; 5.3 Non-Curve-Crossing Case; 5.3.1 Rosen-Zener-Demkov model
  • 5.3.2 Diabatically avoided crossing model5.4 Exponential Potential Model: Unification of the Landau-Zener and Rosen-Zener Models; 5.4.1 Model 1 - Exact Solution; 5.4.2 Model 2 - Exact Solution; 5.4.3 Model 3 - Semiclassical Solution; 5.5 Mathematical Implications; 5.5.1 Case (i); 5.5.2 Case (ii); 5.5.3 Case (iii); Chapter 6. Basic Two-State Theory for Time-Dependent Processes; 6.1 Exact Solution of Quadratic Potential Problem; 6.2 Semiclassical Solution in General Case; 6.2.1 Two-crossing case: ß 0; 6.2.2 Diabatically avoided crossing case: ß 0; 6.3 Other Exactly Solvable Models
  • (i) Case I: δ = 0(ii) Case II: δ = .1/2; (iii) Case III: δ = 1/2; Chapter 7. Two-State Problems; 7.1 Diagrammatic Technique; 7.2 Inelastic Scattering; 7.3 Elastic Scattering with Resonances and Predissociation; 7.4 Perturbed Bound States; 7.5 Time-Dependent Periodic Crossing Problems; 7.6 Time-Dependent Nonlinear Equations Related to Bose-Einstein Condensate Problems; 7.7 Wave Packet Dynamics in a Linearly Chirped Laser Field; Chapter 8. Effects of Coupling to Phonons and Quantum Devices; 8.1 Effects of Coupling to Phonons; 8.2 Quantum Devices; Chapter 9. Multi-Channel Problems
  • 9.1 Exactly Solvable Models9.1.1 Time-independent case; 9.1.2 Time-dependent case; 9.2 Semiclassical Theory of Time-Independent Multi-Channel Problems; 9.2.1 General framework; 9.2.1.1 Case of no closed channel (m=0); 9.2.1.2 Case of m 0 at energies higher than the bottom of the highest adiabatic potential; 9.2.1.3 Case of m 0 at energies lower than the bottom of the highest adiabatic potential; 9.2.2 Numerical example; 9.3 Time-Dependent Problems; Chapter 10. Multi-Dimensional Problems; 10.1 Classification of Surface Crossing; 10.1.1 Crossing seam; 10.1.2 Conical intersection
  • 10.1.3 Renner-Teller effect
Dimensions
unknown
Edition
2nd ed.
Extent
1 online resource (515 p.)
Form of item
online
Isbn
9789814329781
Media category
computer
Media type code
  • c
Specific material designation
remote
System control number
  • (CKB)2550000000101553
  • (EBL)919067
  • (OCoLC)794328366
  • (SSID)ssj0000657697
  • (PQKBManifestationID)12285311
  • (PQKBTitleCode)TC0000657697
  • (PQKBWorkID)10656526
  • (PQKB)11507420
  • (MiAaPQ)EBC919067
  • (WSP)00002609
  • (EXLCZ)992550000000101553

Library Locations

  • Albert D. Cohen Management LibraryBorrow it
    181 Freedman Crescent, Winnipeg, MB, R3T 5V4, CA
    49.807878 -97.129961
  • Architecture/Fine Arts LibraryBorrow it
    84 Curry Place, Winnipeg, MB, CA
    49.807716 -97.136226
  • Archives and Special CollectionsBorrow it
    25 Chancellors Circle (Elizabeth Dafoe Library), Room 330, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Bibliothèque Alfred-Monnin (Université de Saint-Boniface)Borrow it
    200, avenue de la Cathédrale, Local 2110, Winnipeg, MB, R2H 0H7, CA
    49.888861 -97.119735
  • Bill Larson Library (Grace Hospital)Borrow it
    300 Booth Drive, G-227, Winnipeg, MB, R3J 3M7, CA
    49.882400 -97.276436
  • Carolyn Sifton - Helene Fuld Library (St. Boniface General Hospital)Borrow it
    409 Tache Avenue, Winnipeg, MB, R2H 2A6, CA
    49.883388 -97.126050
  • Concordia Hospital LibraryBorrow it
    1095 Concordia Avenue, Winnipeg, MB, R2K 3S8, CA
    49.913252 -97.064683
  • Donald W. Craik Engineering LibraryBorrow it
    75B Chancellors Circle (Engineering Building E3), Room 361, Winnipeg, MB, R3T 2N2, CA
    49.809053 -97.133292
  • E.K. Williams Law LibraryBorrow it
    224 Dysart Road, Winnipeg, MB, R3T 5V4, CA
    49.811829 -97.131017
  • Eckhardt-Gramatté Music LibraryBorrow it
    136 Dafoe Road (Taché Arts Complex), Room 257, Winnipeg, MB, R3T 2N2, CA
    49.807964 -97.132222
  • Elizabeth Dafoe LibraryBorrow it
    25 Chancellors Circle, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Fr. H. Drake Library (St. Paul's College)Borrow it
    70 Dysart Road, Winnipeg, MB, R3T 2M6, CA
    49.810605 -97.138184
  • J.W. Crane Memorial Library (Deer Lodge Centre)Borrow it
    2109 Portage Avenue, Winnipeg, MB, R3J 0L3, CA
    49.878000 -97.235520
  • Libraries Annex (not open to the public; please see web page for details)Borrow it
    25 Chancellors Circle (in the Elizabeth Dafoe Library), Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Neil John Maclean Health Sciences LibraryBorrow it
    727 McDermot Avenue (Brodie Centre), 200 Level, Winnipeg, MB, R3E 3P5, CA
    49.903563 -97.160554
  • Sciences and Technology LibraryBorrow it
    186 Dysart Road, Winnipeg, MB, R3T 2M8, CA
    49.811526 -97.133257
  • Seven Oaks General Hospital LibraryBorrow it
    2300 McPhillips Street, Winnipeg, MB, R2V 3M3, CA
    49.955177 -97.148865
  • Sister St. Odilon Library (Misericordia Health Centre)Borrow it
    99 Cornish Avenue, Winnipeg, MB, R3C 1A2, CA
    49.879592 -97.160425
  • St. John's College LibraryBorrow it
    92 Dysart Road, Winnipeg, MB, R3T 2M5, CA
    49.811242 -97.137156
  • Victoria General Hospital LibraryBorrow it
    2340 Pembina Highway, Winnipeg, MB, R3T 2E8, CA
    49.806755 -97.152739
  • William R Newman Library (Agriculture)Borrow it
    66 Dafoe Road, Winnipeg, MB, R3T 2R3, CA
    49.806936 -97.135525
Processing Feedback ...