The Resource Physical ultrasonics of composites, Stanislav I. Rokhlin, Dale E. Chimenti, Peter B. Nagy

Physical ultrasonics of composites, Stanislav I. Rokhlin, Dale E. Chimenti, Peter B. Nagy

Label
Physical ultrasonics of composites
Title
Physical ultrasonics of composites
Statement of responsibility
Stanislav I. Rokhlin, Dale E. Chimenti, Peter B. Nagy
Creator
Contributor
Subject
Language
eng
Cataloging source
EQO
http://library.link/vocab/creatorName
Rokhlin, S. I.
Dewey number
620.11874
Illustrations
illustrations
Index
index present
LC call number
TA418.9.C6
LC item number
R65 2011
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/relatedWorkOrContributorDate
1952-
http://library.link/vocab/relatedWorkOrContributorName
  • Chimenti, Dale E
  • Nagy, P. B.
http://library.link/vocab/subjectName
  • Composite materials
  • Ultrasonic testing
Label
Physical ultrasonics of composites, Stanislav I. Rokhlin, Dale E. Chimenti, Peter B. Nagy
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • Stress
  • Self-reference method
  • 3.1.6.
  • Multiple reflection method
  • 3.1.7.
  • Comments on accuracy, phase correction, and applicability of the plane wave approximation in angle-beam, self-referenced, through-transmission method
  • 3.2.
  • Examples of Bulk Wave Refraction Velocity Measurements
  • 3.2.1.
  • Experimental apparatus
  • 3.2.2.
  • 1.2.2.
  • Double through-transmission method for graphite/epoxy composites
  • 3.3.
  • Critical Angle Measurement of Elastic Constants
  • 3.3.1.
  • Introduction
  • 3.3.2.
  • Concept of the method
  • 3.3.3.
  • Critical angle measurements
  • 3.3.4.
  • Strain
  • Experimental results for graphite/epoxy composites
  • 3.4.
  • Determination of Elastic Constants from Phase Velocity Data
  • 3.4.1.
  • Reconstruction of elastic constants
  • 3.4.2.
  • Stability of the reconstruction algorithm
  • 3.5.
  • Group Velocity Measurements
  • 3.5.1.
  • 1.2.3.
  • Reconstruction of elastic constants from group velocity data
  • 3.5.2.
  • Determination of elastic constants from group velocity data in a symmetry plane
  • 3.5.3.
  • Comparison of the reconstruction results from group and phase velocity data in symmetry planes
  • 3.5.4.
  • Reconstruction from group velocity data in non-symmetry planes
  • Bibliography
  • 4.
  • Reflection and Refraction of Waves at a Planar Composite Interface
  • Constitutive equation
  • 4.1.
  • Introduction
  • 4.2.
  • Background
  • 4.2.1.
  • Snell's law
  • 4.2.2.
  • Isotropic media analysis using slowness surfaces
  • 4.3.
  • Scattering at an Interface between Two Generally Anisotropic Media
  • 1.3.
  • 4.3.1.
  • Introduction
  • 4.3.2.
  • Snell's law (anisotropic case)
  • 4.3.3.
  • Determination of the slowness vectors of reflected and refracted waves
  • 4.3.4.
  • Calculation of the wave and polarization vectors
  • 4.3.5.
  • Example: Refracted waves in isotropic solids with incident waves from a fluid
  • Generalized Hooke's Law
  • 4.4.
  • Determination of Reflection and Transmission Coefficients
  • 4.4.1.
  • Boundary conditions, amplitude coefficients
  • 4.4.2.
  • Energy conversion coefficients
  • 4.5.
  • Examples for Graphite/Epoxy Composite
  • 4.5.1.
  • Fluid/composite interface
  • 1.4.
  • 4.5.2.
  • Isotropic wedge/composite interface
  • 4.5.3.
  • Composite/composite interface
  • 4.6.
  • Geometrical Considerations on Reflection and Refraction, Grazing and Critical Angles
  • Bibliography
  • 5.
  • Guided Waves in Plates and Rods
  • 5.1.
  • Stress-Strain Relations for Media of Higher Symmetries
  • Introduction
  • 5.2.
  • Guided Waves in a Uniaxial Laminate
  • 5.2.1.
  • Preliminaries
  • 5.2.2.
  • Plate Wave Solutions
  • 5.3.
  • Leaky Guided Waves in a Fluid-Loaded Plate
  • 5.4.
  • 1.4.1.
  • Fluid-Solid Plate Reflection Coefficient
  • 5.5.
  • Waves in Composite Rods
  • Bibliography
  • 6.
  • Elastic Waves in Multilayer Composites
  • 6.1.
  • Introduction
  • 6.2.
  • Transfer Matrix
  • Machine generated contents note:
  • Monoclinic symmetry
  • 6.3.
  • Stiffness Matrix
  • 6.3.1.
  • General formulation of the stiffness matrix for an anisotropic layer
  • 6.3.2.
  • Global stiffness matrix
  • 6.3.3.
  • Relation between transfer and stiffness matrices
  • 6.4.
  • Scattering Coefficients for a Fluid-Loaded Composite Laminate
  • 1.4.2.
  • 6.5.
  • Experimental Phenomenology
  • 6.6.
  • Extensions of the Stiffness Matrix
  • 6.6.1.
  • Higher symmetry lamina
  • 6.6.2.
  • Stiffness matrix for a fluid
  • 6.6.3.
  • Stiffness matrix for imperfect boundary conditions
  • Orthotropic symmetry
  • 6.6.4.
  • Stiffness matrix computations for a monoclinic lamina
  • 6.6.5.
  • Simple asymptotic method to compute stiffness matrix
  • Bibliography
  • 7.
  • Waves in Periodically Layered Composites
  • 7.1.
  • Introduction and Background
  • 7.2.
  • 1.4.3.
  • Simple Illustration
  • 7.3.
  • Floquet Analysis for Anisotropic Periodic Plates
  • 7.4.
  • Homogenization of Periodically Layered Composites
  • 7.4.1.
  • Floquet wave spectrum and signal distortion
  • 7.4.2.
  • Homogenization approach
  • 7.4.3.
  • Transversely isotropic symmetry
  • Homogenization domain estimation for an anisotropic cell
  • 7.5.
  • Lamina Moduli Measurement by Floquet waves
  • 7.5.1.
  • Problem statement
  • 7.5.2.
  • Floquet wave lamina moduli determination
  • 7.5.3.
  • Effective property determination: Static limit
  • 7.6.
  • 1.4.4.
  • Computation of the Guided Wave Spectrum
  • Bibliography
  • 8.
  • Measurement of Scattering Coefficients
  • 8.1.
  • Introduction
  • 8.2.
  • Scattering Coefficient Integral
  • 8.2.1.
  • Uniform asymptotics
  • Cubic symmetry
  • 8.3.
  • Computational Results
  • 8.4.
  • Complex Transducer Points
  • 8.4.1.
  • Two-dimensional voltage calculation
  • 8.4.2.
  • Synthetic aperture scanning
  • 8.4.3.
  • Focused beams
  • 1.4.5.
  • 8.4.4.
  • Three-dimensional effects on the receiver voltage
  • 8.5.
  • Experimental Results
  • 8.6.
  • Elastic Stiffness Reconstruction
  • Bibliography
  • 9.
  • Air-Coupled Ultrasonics
  • 9.1.
  • Isotropic material
  • Introduction
  • 9.2.
  • Transduction and Other Challenges
  • 9.3.
  • Material Characterization in Air
  • 9.4.
  • Focusing
  • 9.5.
  • Techniques and Applications
  • Bibliography
  • 1.5.
  • 1.
  • Relation between Stiffness and Compliance
  • 1.5.1.
  • Engineering constants for orthotropic materials
  • 1.6.
  • Determination of the Full Compliance Matrix
  • 1.7.
  • Material Coordinate System Transformations
  • 1.7.1.
  • Property matrices in a rotated coordinate system
  • 1.7.2.
  • Fundamentals of Composite Elastic Properties
  • Rotation about the x3 axis
  • 1.8.
  • Analysis in a Planar Geometry
  • 1.8.1.
  • Two-dimensional stress-strain relations
  • 1.8.2.
  • Rotation about the principal axis
  • 1.8.3.
  • Boron-epoxy composite: An example
  • 1.9.
  • 1.1.
  • Experimental Determination of Stiffness
  • Bibliography
  • 2.
  • Elastic Waves in Anisotropic Media
  • 2.1.
  • Equations of Motion
  • 2.1.1.
  • Introduction
  • 2.1.2.
  • Differential approach
  • Introduction
  • 2.1.3.
  • Integral principle
  • 2.2.
  • Plane Wave Propagation in Bulk Materials
  • 2.3.
  • Determination of the Polarization Vectors
  • 2.4.
  • Example: Plane Waves in an Orthotropic Material
  • 2.5.
  • Energy Flux and Group Velocity
  • 1.2.
  • 2.6.
  • Relation between the Phase and Group Velocities
  • 2.7.
  • Measurement of the Group Velocity
  • 2.8.
  • Examples
  • 2.9.
  • Phase Velocity, Group Velocity, and Slowness
  • 2.9.1.
  • Slowness
  • Mechanical Relationships
  • 2.9.2.
  • Examples for a graphite-epoxy composite
  • 2.9.3.
  • Phase and group velocities in symmetry planes of orthotropic materials
  • 2.9.4.
  • Phase and group velocities in non-symmetry planes of orthotropic and transversely isotropic materials
  • Bibliography
  • 3.
  • Bulk Ultrasonic Techniques for Evaluation of Elastic Properties
  • 3.1.
  • 1.2.1.
  • Bulk Wave Refraction Method for Phase Velocity Measurement
  • 3.1.1.
  • Introduction
  • 3.1.2.
  • Delay times for phase and group velocities in a solid layer of general anisotropy
  • 3.1.3.
  • Phase velocity measurement
  • 3.1.4.
  • Double through-transmission phase velocity measurement
  • 3.1.5.
Dimensions
24 cm.
Extent
xxi, 378 p.
Isbn
9780195079609
Isbn Type
(hbk.)
Other physical details
ill.
System control number
  • (CaMWU)u2194579-01umb_inst
  • 2330401
  • (Sirsi) i9780195079609
  • (OCoLC)707607616
Label
Physical ultrasonics of composites, Stanislav I. Rokhlin, Dale E. Chimenti, Peter B. Nagy
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • Stress
  • Self-reference method
  • 3.1.6.
  • Multiple reflection method
  • 3.1.7.
  • Comments on accuracy, phase correction, and applicability of the plane wave approximation in angle-beam, self-referenced, through-transmission method
  • 3.2.
  • Examples of Bulk Wave Refraction Velocity Measurements
  • 3.2.1.
  • Experimental apparatus
  • 3.2.2.
  • 1.2.2.
  • Double through-transmission method for graphite/epoxy composites
  • 3.3.
  • Critical Angle Measurement of Elastic Constants
  • 3.3.1.
  • Introduction
  • 3.3.2.
  • Concept of the method
  • 3.3.3.
  • Critical angle measurements
  • 3.3.4.
  • Strain
  • Experimental results for graphite/epoxy composites
  • 3.4.
  • Determination of Elastic Constants from Phase Velocity Data
  • 3.4.1.
  • Reconstruction of elastic constants
  • 3.4.2.
  • Stability of the reconstruction algorithm
  • 3.5.
  • Group Velocity Measurements
  • 3.5.1.
  • 1.2.3.
  • Reconstruction of elastic constants from group velocity data
  • 3.5.2.
  • Determination of elastic constants from group velocity data in a symmetry plane
  • 3.5.3.
  • Comparison of the reconstruction results from group and phase velocity data in symmetry planes
  • 3.5.4.
  • Reconstruction from group velocity data in non-symmetry planes
  • Bibliography
  • 4.
  • Reflection and Refraction of Waves at a Planar Composite Interface
  • Constitutive equation
  • 4.1.
  • Introduction
  • 4.2.
  • Background
  • 4.2.1.
  • Snell's law
  • 4.2.2.
  • Isotropic media analysis using slowness surfaces
  • 4.3.
  • Scattering at an Interface between Two Generally Anisotropic Media
  • 1.3.
  • 4.3.1.
  • Introduction
  • 4.3.2.
  • Snell's law (anisotropic case)
  • 4.3.3.
  • Determination of the slowness vectors of reflected and refracted waves
  • 4.3.4.
  • Calculation of the wave and polarization vectors
  • 4.3.5.
  • Example: Refracted waves in isotropic solids with incident waves from a fluid
  • Generalized Hooke's Law
  • 4.4.
  • Determination of Reflection and Transmission Coefficients
  • 4.4.1.
  • Boundary conditions, amplitude coefficients
  • 4.4.2.
  • Energy conversion coefficients
  • 4.5.
  • Examples for Graphite/Epoxy Composite
  • 4.5.1.
  • Fluid/composite interface
  • 1.4.
  • 4.5.2.
  • Isotropic wedge/composite interface
  • 4.5.3.
  • Composite/composite interface
  • 4.6.
  • Geometrical Considerations on Reflection and Refraction, Grazing and Critical Angles
  • Bibliography
  • 5.
  • Guided Waves in Plates and Rods
  • 5.1.
  • Stress-Strain Relations for Media of Higher Symmetries
  • Introduction
  • 5.2.
  • Guided Waves in a Uniaxial Laminate
  • 5.2.1.
  • Preliminaries
  • 5.2.2.
  • Plate Wave Solutions
  • 5.3.
  • Leaky Guided Waves in a Fluid-Loaded Plate
  • 5.4.
  • 1.4.1.
  • Fluid-Solid Plate Reflection Coefficient
  • 5.5.
  • Waves in Composite Rods
  • Bibliography
  • 6.
  • Elastic Waves in Multilayer Composites
  • 6.1.
  • Introduction
  • 6.2.
  • Transfer Matrix
  • Machine generated contents note:
  • Monoclinic symmetry
  • 6.3.
  • Stiffness Matrix
  • 6.3.1.
  • General formulation of the stiffness matrix for an anisotropic layer
  • 6.3.2.
  • Global stiffness matrix
  • 6.3.3.
  • Relation between transfer and stiffness matrices
  • 6.4.
  • Scattering Coefficients for a Fluid-Loaded Composite Laminate
  • 1.4.2.
  • 6.5.
  • Experimental Phenomenology
  • 6.6.
  • Extensions of the Stiffness Matrix
  • 6.6.1.
  • Higher symmetry lamina
  • 6.6.2.
  • Stiffness matrix for a fluid
  • 6.6.3.
  • Stiffness matrix for imperfect boundary conditions
  • Orthotropic symmetry
  • 6.6.4.
  • Stiffness matrix computations for a monoclinic lamina
  • 6.6.5.
  • Simple asymptotic method to compute stiffness matrix
  • Bibliography
  • 7.
  • Waves in Periodically Layered Composites
  • 7.1.
  • Introduction and Background
  • 7.2.
  • 1.4.3.
  • Simple Illustration
  • 7.3.
  • Floquet Analysis for Anisotropic Periodic Plates
  • 7.4.
  • Homogenization of Periodically Layered Composites
  • 7.4.1.
  • Floquet wave spectrum and signal distortion
  • 7.4.2.
  • Homogenization approach
  • 7.4.3.
  • Transversely isotropic symmetry
  • Homogenization domain estimation for an anisotropic cell
  • 7.5.
  • Lamina Moduli Measurement by Floquet waves
  • 7.5.1.
  • Problem statement
  • 7.5.2.
  • Floquet wave lamina moduli determination
  • 7.5.3.
  • Effective property determination: Static limit
  • 7.6.
  • 1.4.4.
  • Computation of the Guided Wave Spectrum
  • Bibliography
  • 8.
  • Measurement of Scattering Coefficients
  • 8.1.
  • Introduction
  • 8.2.
  • Scattering Coefficient Integral
  • 8.2.1.
  • Uniform asymptotics
  • Cubic symmetry
  • 8.3.
  • Computational Results
  • 8.4.
  • Complex Transducer Points
  • 8.4.1.
  • Two-dimensional voltage calculation
  • 8.4.2.
  • Synthetic aperture scanning
  • 8.4.3.
  • Focused beams
  • 1.4.5.
  • 8.4.4.
  • Three-dimensional effects on the receiver voltage
  • 8.5.
  • Experimental Results
  • 8.6.
  • Elastic Stiffness Reconstruction
  • Bibliography
  • 9.
  • Air-Coupled Ultrasonics
  • 9.1.
  • Isotropic material
  • Introduction
  • 9.2.
  • Transduction and Other Challenges
  • 9.3.
  • Material Characterization in Air
  • 9.4.
  • Focusing
  • 9.5.
  • Techniques and Applications
  • Bibliography
  • 1.5.
  • 1.
  • Relation between Stiffness and Compliance
  • 1.5.1.
  • Engineering constants for orthotropic materials
  • 1.6.
  • Determination of the Full Compliance Matrix
  • 1.7.
  • Material Coordinate System Transformations
  • 1.7.1.
  • Property matrices in a rotated coordinate system
  • 1.7.2.
  • Fundamentals of Composite Elastic Properties
  • Rotation about the x3 axis
  • 1.8.
  • Analysis in a Planar Geometry
  • 1.8.1.
  • Two-dimensional stress-strain relations
  • 1.8.2.
  • Rotation about the principal axis
  • 1.8.3.
  • Boron-epoxy composite: An example
  • 1.9.
  • 1.1.
  • Experimental Determination of Stiffness
  • Bibliography
  • 2.
  • Elastic Waves in Anisotropic Media
  • 2.1.
  • Equations of Motion
  • 2.1.1.
  • Introduction
  • 2.1.2.
  • Differential approach
  • Introduction
  • 2.1.3.
  • Integral principle
  • 2.2.
  • Plane Wave Propagation in Bulk Materials
  • 2.3.
  • Determination of the Polarization Vectors
  • 2.4.
  • Example: Plane Waves in an Orthotropic Material
  • 2.5.
  • Energy Flux and Group Velocity
  • 1.2.
  • 2.6.
  • Relation between the Phase and Group Velocities
  • 2.7.
  • Measurement of the Group Velocity
  • 2.8.
  • Examples
  • 2.9.
  • Phase Velocity, Group Velocity, and Slowness
  • 2.9.1.
  • Slowness
  • Mechanical Relationships
  • 2.9.2.
  • Examples for a graphite-epoxy composite
  • 2.9.3.
  • Phase and group velocities in symmetry planes of orthotropic materials
  • 2.9.4.
  • Phase and group velocities in non-symmetry planes of orthotropic and transversely isotropic materials
  • Bibliography
  • 3.
  • Bulk Ultrasonic Techniques for Evaluation of Elastic Properties
  • 3.1.
  • 1.2.1.
  • Bulk Wave Refraction Method for Phase Velocity Measurement
  • 3.1.1.
  • Introduction
  • 3.1.2.
  • Delay times for phase and group velocities in a solid layer of general anisotropy
  • 3.1.3.
  • Phase velocity measurement
  • 3.1.4.
  • Double through-transmission phase velocity measurement
  • 3.1.5.
Dimensions
24 cm.
Extent
xxi, 378 p.
Isbn
9780195079609
Isbn Type
(hbk.)
Other physical details
ill.
System control number
  • (CaMWU)u2194579-01umb_inst
  • 2330401
  • (Sirsi) i9780195079609
  • (OCoLC)707607616

Library Locations

  • Albert D. Cohen Management LibraryBorrow it
    181 Freedman Crescent, Winnipeg, MB, R3T 5V4, CA
    49.807878 -97.129961
  • Architecture/Fine Arts LibraryBorrow it
    84 Curry Place, Winnipeg, MB, CA
    49.807716 -97.136226
  • Archives and Special CollectionsBorrow it
    25 Chancellors Circle (Elizabeth Dafoe Library), Room 330, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Bibliothèque Alfred-Monnin (Université de Saint-Boniface)Borrow it
    200, avenue de la Cathédrale, Local 2110, Winnipeg, MB, R2H 0H7, CA
    49.888861 -97.119735
  • Bill Larson Library (Grace Hospital)Borrow it
    300 Booth Drive, G-227, Winnipeg, MB, R3J 3M7, CA
    49.882400 -97.276436
  • Carolyn Sifton - Helene Fuld Library (St. Boniface General Hospital)Borrow it
    409 Tache Avenue, Winnipeg, MB, R2H 2A6, CA
    49.883388 -97.126050
  • Concordia Hospital LibraryBorrow it
    1095 Concordia Avenue, Winnipeg, MB, R2K 3S8, CA
    49.913252 -97.064683
  • Donald W. Craik Engineering LibraryBorrow it
    75B Chancellors Circle (Engineering Building E3), Room 361, Winnipeg, MB, R3T 2N2, CA
    49.809053 -97.133292
  • E.K. Williams Law LibraryBorrow it
    224 Dysart Road, Winnipeg, MB, R3T 5V4, CA
    49.811829 -97.131017
  • Eckhardt-Gramatté Music LibraryBorrow it
    136 Dafoe Road (Taché Arts Complex), Room 257, Winnipeg, MB, R3T 2N2, CA
    49.807964 -97.132222
  • Elizabeth Dafoe LibraryBorrow it
    25 Chancellors Circle, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Fr. H. Drake Library (St. Paul's College)Borrow it
    70 Dysart Road, Winnipeg, MB, R3T 2M6, CA
    49.810605 -97.138184
  • J.W. Crane Memorial Library (Deer Lodge Centre)Borrow it
    2109 Portage Avenue, Winnipeg, MB, R3J 0L3, CA
    49.878000 -97.235520
  • Libraries Annex (not open to the public; please see web page for details)Borrow it
    25 Chancellors Circle (in the Elizabeth Dafoe Library), Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Neil John Maclean Health Sciences LibraryBorrow it
    727 McDermot Avenue (Brodie Centre), 200 Level, Winnipeg, MB, R3E 3P5, CA
    49.903563 -97.160554
  • Sciences and Technology LibraryBorrow it
    186 Dysart Road, Winnipeg, MB, R3T 2M8, CA
    49.811526 -97.133257
  • Seven Oaks General Hospital LibraryBorrow it
    2300 McPhillips Street, Winnipeg, MB, R2V 3M3, CA
    49.955177 -97.148865
  • Sister St. Odilon Library (Misericordia Health Centre)Borrow it
    99 Cornish Avenue, Winnipeg, MB, R3C 1A2, CA
    49.879592 -97.160425
  • St. John's College LibraryBorrow it
    92 Dysart Road, Winnipeg, MB, R3T 2M5, CA
    49.811242 -97.137156
  • Victoria General Hospital LibraryBorrow it
    2340 Pembina Highway, Winnipeg, MB, R3T 2E8, CA
    49.806755 -97.152739
  • William R Newman Library (Agriculture)Borrow it
    66 Dafoe Road, Winnipeg, MB, R3T 2R3, CA
    49.806936 -97.135525
Processing Feedback ...