The Resource Remote sensing time series image processing, edited by Qihao Weng

Remote sensing time series image processing, edited by Qihao Weng

Label
Remote sensing time series image processing
Title
Remote sensing time series image processing
Statement of responsibility
edited by Qihao Weng
Contributor
Editor
Subject
Language
eng
Cataloging source
NhCcYBP
Dewey number
910/.020285642
Illustrations
  • illustrations
  • maps
  • plates
Index
index present
LC call number
G70.4
LC item number
.R476 2018
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
  • Weng, Qihao
  • ProQuest (Firm)
Series statement
Taylor & Francis series in imaging science
http://library.link/vocab/subjectName
  • Remote-sensing images
  • Land use
  • Earth sciences
  • Time-series analysis
Label
Remote sensing time series image processing, edited by Qihao Weng
Link
https://ebookcentral.proquest.com/lib/umanitoba/detail.action?docID=5352267
Instantiates
Publication
Note
Description based on print version record
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • 1.1.
  • 1.5.3.
  • Future Development
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.5.3.1.
  • Spatial Information
  • Zhe Zhu
  • Shi Qiu
  • Introduction
  • Binbin He
  • Chengbin Deng
  • 1.5.3.2.
  • Temporal Frequency
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.5.3.3.
  • Haze/Thin Cloud Removal
  • Zhe Zhu
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.6.
  • Conclusion
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • Shi Qiu
  • References
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 2.
  • Automatic System for Reconstructing High-Quality Seasonal Landsat Time Series
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Binbin He
  • Chengbin Deng
  • 2.1.
  • Introduction
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • 2.2.
  • Methods
  • Xiaolin Zhu
  • Chengbin Deng
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • 2.2.1.
  • Classify Uncontaminated Pixels in Each Image
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • 2.2.2.
  • 1.2.
  • Select Ancillary Data for Each Contaminated Pixel from the Time Series
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • 2.2.3.
  • Interpolate Contaminated Pixels by NSPI
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Landsat Data and Reference Masks
  • Desheng Liu
  • 2.3.
  • Experiments
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • 2.4.
  • Results
  • Xiaolin Zhu
  • Zhe Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • 2.4.1.
  • Reconstruction of Real Landsat Time Series
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • 2.4.2.
  • Shi Qiu
  • Reconstruction of Simulated Landsat Time Series
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • 2.5.
  • Conclusion and Discussions
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Machine generated contents note:
  • Binbin He
  • Desheng Liu
  • Acknowledgments
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • References
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Chengbin Deng
  • Desheng Liu
  • 3.
  • Spatiotemporal Data Fusion to Generate Synthetic High Spatial and Temporal Resolution Satellite Images
  • Xiaolin Zhu
  • Eileen H
  • 1.2.1.
  • Landsat Data
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.2.2.
  • Manual Masks of Landsat Cloud and Cloud Shadow
  • 1.
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.3.
  • Cloud and Cloud Shadow Detection Based on a Single-Date Landsat Image
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • Cloud and Cloud Shadow Detection for Landsat Images: The Fundamental Basis for Analyzing Landsat Time Series
  • 1.3.1.
  • Physical-Rules-Based Cloud and Cloud Shadow Detection
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.3.1.1.
  • Physical-Rules-Based Cloud Detection Algorithms
  • Zhe Zhu
  • Shi Qiu
  • Brief Summary
  • Binbin He
  • Chengbin Deng
  • 1.3.1.2.
  • Physical-Rules-Based Cloud Shadow Detection Algorithms
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.3.2.
  • Machine-Learning-Based Cloud and Cloud Shadow Detection
  • Zhe Zhu
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.4.
  • Cloud and Cloud Shadow Detection Based on Multitemporal Landsat Images
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • Shi Qiu
  • 1.4.1.
  • Cloud Detection Based on Multitemporal Landsat Images
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.4.2.
  • Cloud Shadow Detection Based on Multitemporal Landsat Images
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Binbin He
  • Chengbin Deng
  • 1.5.
  • Discussions
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.5.1.
  • Comparison of Different Algorithms
  • Chengbin Deng
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.5.2.
  • Challenges
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 3.2.
  • Iryna Dronova
  • Lu Liang
  • 4.3.1.
  • Agricultural Mapping and Monitoring of Crops
  • Iryna Dronova
  • Lu Liang
  • 4.3.2.
  • Forest Mapping and Ecosystem Analyses
  • Iryna Dronova
  • Lu Liang
  • NDVI Linear Mixing Growth Model (NDVI-LMGM)
  • 4.3.3.
  • Hydro-Phenological Analyses of Complex Flooded Landscapes
  • Iryna Dronova
  • Lu Liang
  • 4.4.
  • Multi-Year Phenological Inference
  • Iryna Dronova
  • Lu Liang
  • 4.4.1.
  • Local-Scale: Phenocam Observations
  • Jin Chen
  • Iryna Dronova
  • Lu Liang
  • 4.4.2.
  • Regional Analyses of Greenness Trends
  • Iryna Dronova
  • Lu Liang
  • 4.4.2.1.
  • Basic Trend Analyses
  • Iryna Dronova
  • Lu Liang
  • Yuhan Rao
  • 4.4.2.2.
  • Trajectory-Based Landscape Change Analyses
  • Iryna Dronova
  • Lu Liang
  • 4.4.2.3.
  • Continuous Change Detection and Classification of Land Cover
  • Iryna Dronova
  • Lu Liang
  • 4.4.3.
  • Broad-Scale Phenological Analyses with Multi-Year Seasonal Data
  • Xiaolin Zhu
  • Iryna Dronova
  • Lu Liang
  • 4.4.3.1.
  • Multi-Year Inference with Phenological Curves
  • Iryna Dronova
  • Lu Liang
  • 4.4.3.2.
  • Percent above Threshold Approaches
  • Iryna Dronova
  • Lu Liang
  • 3.2.1.
  • 4.5.
  • Applications and the Importance of Ancillary Factors
  • Iryna Dronova
  • Lu Liang
  • References
  • Iryna Dronova
  • Lu Liang
  • 5.
  • Time Series Analysis of Moderate Resolution Land Surface Temperatures
  • Iryna Dronova
  • Description of NDVI-LMGM
  • Lu Liang
  • 5.1.
  • Introduction
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.2.
  • Data and Methods
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.2.1.
  • Jin Chen
  • MYD11A1 and MOD11A1 Land Surface Temperatures
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.2.2.
  • MODIS Land Cover and Urban Areas
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.2.3.
  • Annual Cycle Parameters
  • Benjamin Bechtel
  • Yuhan Rao
  • Panagiotis Sismanidis
  • 5.3.
  • Results and Discussion
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.3.1.
  • ACP for Central Europe
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.3.2.
  • Xiaolin Zhu
  • Comparison between Collection-5 and Collection-6
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.3.3.
  • Latitudinal Gradients in ACP
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.4.
  • Applications
  • Benjamin Bechtel
  • Helmer
  • 3.2.2.
  • Panagiotis Sismanidis
  • 5.4.1.
  • Climatological SUHI Analysis
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.4.2.
  • Using the ACPs as Disaggregation Kernels for Downscaling LST Image Data
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.5.
  • Test Experiment
  • Conclusions
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • References
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 6.
  • Impervious Surface Estimation by Integrated Use of Landsat and MODIS Time Series in Wuhan, China
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • Jin Chen
  • 6.1.
  • Introduction
  • Zhang Lei
  • Qihao Weng
  • 6.2.
  • Study Area
  • Zhang Lei
  • Qihao Weng
  • 6.3.
  • Methodology
  • Yuhan Rao
  • Zhang Lei
  • Qihao Weng
  • 6.3.1.
  • Data Preprocessing
  • Zhang Lei
  • Qihao Weng
  • 6.3.2.
  • Reconstruction of Time Series BCI
  • Zhang Lei
  • Qihao Weng
  • Xiaolin Zhu
  • 6.3.3.
  • Similarity of Temporal Features
  • Zhang Lei
  • Qihao Weng
  • 6.3.4.
  • Classification Based on Semi-Supervised SVM
  • Zhang Lei
  • Qihao Weng
  • 6.4.
  • Results and Discussion
  • 3.2.2.1.
  • Zhang Lei
  • Qihao Weng
  • 6.4.1.
  • Annual Dynamics of Impervious Surfaces
  • Zhang Lei
  • Qihao Weng
  • 6.4.2.
  • Classification Accuracy
  • Zhang Lei
  • Qihao Weng
  • Assessment over Spatial and Temporal Contrasting Regions
  • 6.5.
  • Conclusions
  • Zhang Lei
  • Qihao Weng
  • Acknowledgments
  • Zhang Lei
  • Qihao Weng
  • References
  • Zhang Lei
  • Qihao Weng
  • Jin Chen
  • 7.
  • Mapping Land Cover Trajectories Using Monthly MODIS Time Series from 2001 to 2010
  • Zhang Lei
  • Qihao Weng
  • 7.1.
  • Introduction
  • Shanshan Cai
  • Desheng Liu
  • 7.2.
  • Study Area and Data
  • Yuhan Rao
  • Shanshan Cai
  • Desheng Liu
  • 7.2.1.
  • Study Area
  • Shanshan Cai
  • Desheng Liu
  • 7.2.2.
  • Image Data
  • Shanshan Cai
  • Desheng Liu
  • Xiaolin Zhu
  • 7.2.3.
  • Reference Data
  • Shanshan Cai
  • Desheng Liu
  • 7.3.
  • Methods
  • Shanshan Cai
  • Desheng Liu
  • 7.3.1.
  • Algorithm Overview
  • Jin Chen
  • 3.2.2.2.
  • Shanshan Cai
  • Desheng Liu
  • 7.3.2.
  • Detecting Change Dates
  • Shanshan Cai
  • Desheng Liu
  • 7.3.3.
  • Generating Adaptive Time Series
  • Shanshan Cai
  • Desheng Liu
  • Assessment for Long Term Prediction
  • 7.3.4.
  • Modified SVM Classification
  • Shanshan Cai
  • Desheng Liu
  • 7.3.5.
  • Integrated Training and Classification
  • Shanshan Cai
  • Desheng Liu
  • 7.3.6.
  • Trajectory Reconstruction
  • Jin Chen
  • Shanshan Cai
  • Desheng Liu
  • 7.3.7.
  • Comparison of Adaptive Time Series with Full Length Time Series
  • Shanshan Cai
  • Desheng Liu --
  • Yuhan Rao
  • Xiaolin Zhu
  • 3.3.
  • Flexible Spatiotemporal Data Fusion Method (FSDAF)
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • Desheng Liu
  • 3.3.1.
  • Description of FSDAF
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • 3.3.2.
  • Test Experiment
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • 3.1.
  • 3.3.2.1.
  • Assessment of Simulated Results
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • 3.3.2.2.
  • Assessment of Fusing Real Satellite Images
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • Introduction
  • 3.4.
  • Conclusions and Discussion
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • Acknowledgments
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • References
  • Jin Chen
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • 4.
  • Phenological Inference from Times Series Remote Sensing Data
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • 4.1.
  • Introduction
  • Yuhan Rao
  • Iryna Dronova
  • Lu Liang
  • 4.2.
  • Single-Season Phenological Analyses
  • Iryna Dronova
  • Lu Liang
  • 4.2.1.
  • Spectral Indicators of Phenology
  • Iryna Dronova
  • Lu Liang
  • Xiaolin Zhu
  • 4.2.2.
  • Basic Seasonal Phenological Trajectory
  • Iryna Dronova
  • Lu Liang
  • 4.2.3.
  • Phenological Variation Represented by Seasonal Trajectories
  • Iryna Dronova
  • Lu Liang
  • 4.3.
  • Common Applications of Single-Year Phenology
  • Desheng Liu
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • References
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • 7.4.1.
  • 9.
  • General Workflow for Mapping Forest Disturbance History Using Pixel Based Time Series Analysis
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • 9.1.
  • Introduction
  • Feng Zhao
  • Trajectory Mapping Results
  • Chengquan Huang
  • 9.2.
  • Overview of the NAFD-NEX Processing Flow
  • Feng Zhao
  • Chengquan Huang
  • 9.3.
  • Image Selection and Preprocessing
  • Chengquan Huang
  • Feng Zhao
  • 9.3.1.
  • Shanshan Cai
  • Image Selection
  • Feng Zhao
  • Chengquan Huang
  • 9.3.2.
  • Image Preprocessing
  • Feng Zhao
  • Chengquan Huang
  • 9.3.3.
  • Image Compositing
  • Feng Zhao
  • Desheng Liu
  • Chengquan Huang
  • 9.4.
  • VCT Disturbance Analysis
  • Feng Zhao
  • Chengquan Huang
  • 9.4.1.
  • Need for Annual Landsat Time Series
  • Feng Zhao
  • Chengquan Huang
  • 9.4.2.
  • 7.4.2.
  • Western US Sparse Forests Adjustment
  • Feng Zhao
  • Chengquan Huang
  • 9.5.
  • Post Processing
  • Feng Zhao
  • Chengquan Huang
  • 9.5.1.
  • Quality Assessment
  • Feng Zhao
  • Accuracy Assessment of Adaptive Classification Results
  • Chengquan Huang
  • 9.5.2.
  • Adjustment of Minimum Mapping Unit (MMU) to Address Erroneous Forest Disturbance Rates in Low Forest Cover Counties
  • Feng Zhao
  • Chengquan Huang
  • 9.5.3.
  • Map Re-Projection
  • Feng Zhao
  • Chengquan Huang
  • 9.5.4.
  • Shanshan Cai
  • Annual Disturbance Maps Mosaic
  • Feng Zhao
  • Chengquan Huang
  • 9.6.
  • NAFD-NEX Product Generation
  • Feng Zhao
  • Chengquan Huang
  • 9.6.1.
  • NAFD-NEX Product at Oak Ridge National Laboratory (ORNL)
  • Feng Zhao
  • Desheng Liu
  • Chengquan Huang
  • 9.6.2.
  • Validation
  • Feng Zhao
  • Chengquan Huang
  • 9.7.
  • Summary
  • Feng Zhao
  • Chengquan Huang
  • References
  • 7.4.3.
  • Feng Zhao
  • Chengquan Huang
  • 10.
  • Monitoring Annual Vegetated Land Loss to Urbanization with Landsat Archive: A Case Study in Shanghai, China
  • Feng Zhao
  • Chengquan Huang
  • 10.1.
  • Introduction
  • Qingling Zhang
  • Bhartendu Pandey
  • Contents note continued:
  • Accuracy Assessment of Trajectory Mapping Results
  • 10.2.
  • Methodology
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.2.1.
  • Data and Preprocessing
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.2.2.
  • Constructing Time Series of Annual Cloud/Shadow Free Landsat NDVI Composites
  • Shanshan Cai
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.2.3.
  • Properties of the NDVI Mosaics
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.2.4.
  • Simulating NDVI Trajectory Models
  • Qingling Zhang
  • Bhartendu Pandey
  • Desheng Liu
  • 10.2.5.
  • Pinpointing Changes
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.2.6.
  • Post Processing
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.2.7.
  • Accuracy Assessment and Evaluation
  • 7.4.4.
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.3.
  • Results
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.3.1.
  • Results of Change Detection
  • Qingling Zhang
  • Bhartendu Pandey
  • Comparison of Adaptive Time Series with Full Length Time Series
  • 10.3.2.
  • Change Detection Accuracy
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.3.3.
  • Comparison with Official Statistics Data
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.4.
  • Discussions
  • Shanshan Cai
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.5.
  • Conclusions
  • Bhartendu Pandey
  • Qingling Zhang
  • 10.6.
  • Acknowledgment
  • Qingling Zhang
  • Bhartendu Pandey
  • Desheng Liu
  • References
  • Qingling Zhang
  • Bhartendu Pandey
  • 7.5.
  • Discussion
  • Shanshan Cai
  • 7.3.8.
  • Desheng Liu
  • 7.6.
  • Conclusions
  • Shanshan Cai
  • Desheng Liu
  • References
  • Shanshan Cai
  • Desheng Liu
  • 8.
  • Creating a Robust Reference Dataset for Large Area Time Series Disturbance Classification
  • Accuracy Assessment
  • Shanshan Cai
  • Desheng Liu
  • 8.1.
  • Introduction
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • 8.2.
  • Shanshan Cai
  • Study Area
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • 8.3.
  • Methods
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Desheng Liu
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • 8.3.1.
  • Quality Control and Quality Assurance
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • 7.4.
  • 8.4.
  • Case Study
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • 8.4.1.
  • Quality Control and Quality Assurance
  • Mariela Soto-Berelov
  • Results
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • 8.4.2.
  • Mapping Disturbance
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Shanshan Cai
  • Trung H. Nguyen
  • 8.5.
  • Discussion and Conclusion
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • Acknowledgments
  • Mariela Soto-Berelov
Dimensions
unknown
Extent
1 online resource.
Form of item
online
Isbn
9781351680578
Isbn Type
(electronic bk.)
Media category
computer
Media MARC source
rdamedia
Media type code
c
Reproduction note
Electronic reproduction.
Specific material designation
remote
System control number
(NhCcYBP)EBC5352267
Label
Remote sensing time series image processing, edited by Qihao Weng
Link
https://ebookcentral.proquest.com/lib/umanitoba/detail.action?docID=5352267
Publication
Note
Description based on print version record
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • 1.1.
  • 1.5.3.
  • Future Development
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.5.3.1.
  • Spatial Information
  • Zhe Zhu
  • Shi Qiu
  • Introduction
  • Binbin He
  • Chengbin Deng
  • 1.5.3.2.
  • Temporal Frequency
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.5.3.3.
  • Haze/Thin Cloud Removal
  • Zhe Zhu
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.6.
  • Conclusion
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • Shi Qiu
  • References
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 2.
  • Automatic System for Reconstructing High-Quality Seasonal Landsat Time Series
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Binbin He
  • Chengbin Deng
  • 2.1.
  • Introduction
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • 2.2.
  • Methods
  • Xiaolin Zhu
  • Chengbin Deng
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • 2.2.1.
  • Classify Uncontaminated Pixels in Each Image
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • 2.2.2.
  • 1.2.
  • Select Ancillary Data for Each Contaminated Pixel from the Time Series
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • 2.2.3.
  • Interpolate Contaminated Pixels by NSPI
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Landsat Data and Reference Masks
  • Desheng Liu
  • 2.3.
  • Experiments
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • 2.4.
  • Results
  • Xiaolin Zhu
  • Zhe Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • 2.4.1.
  • Reconstruction of Real Landsat Time Series
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • 2.4.2.
  • Shi Qiu
  • Reconstruction of Simulated Landsat Time Series
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • 2.5.
  • Conclusion and Discussions
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Machine generated contents note:
  • Binbin He
  • Desheng Liu
  • Acknowledgments
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Desheng Liu
  • References
  • Xiaolin Zhu
  • Eileen H. Helmer
  • Jin Chen
  • Chengbin Deng
  • Desheng Liu
  • 3.
  • Spatiotemporal Data Fusion to Generate Synthetic High Spatial and Temporal Resolution Satellite Images
  • Xiaolin Zhu
  • Eileen H
  • 1.2.1.
  • Landsat Data
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.2.2.
  • Manual Masks of Landsat Cloud and Cloud Shadow
  • 1.
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.3.
  • Cloud and Cloud Shadow Detection Based on a Single-Date Landsat Image
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • Cloud and Cloud Shadow Detection for Landsat Images: The Fundamental Basis for Analyzing Landsat Time Series
  • 1.3.1.
  • Physical-Rules-Based Cloud and Cloud Shadow Detection
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.3.1.1.
  • Physical-Rules-Based Cloud Detection Algorithms
  • Zhe Zhu
  • Shi Qiu
  • Brief Summary
  • Binbin He
  • Chengbin Deng
  • 1.3.1.2.
  • Physical-Rules-Based Cloud Shadow Detection Algorithms
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.3.2.
  • Machine-Learning-Based Cloud and Cloud Shadow Detection
  • Zhe Zhu
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.4.
  • Cloud and Cloud Shadow Detection Based on Multitemporal Landsat Images
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • Shi Qiu
  • 1.4.1.
  • Cloud Detection Based on Multitemporal Landsat Images
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.4.2.
  • Cloud Shadow Detection Based on Multitemporal Landsat Images
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Binbin He
  • Chengbin Deng
  • 1.5.
  • Discussions
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.5.1.
  • Comparison of Different Algorithms
  • Chengbin Deng
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 1.5.2.
  • Challenges
  • Zhe Zhu
  • Shi Qiu
  • Binbin He
  • Chengbin Deng
  • 3.2.
  • Iryna Dronova
  • Lu Liang
  • 4.3.1.
  • Agricultural Mapping and Monitoring of Crops
  • Iryna Dronova
  • Lu Liang
  • 4.3.2.
  • Forest Mapping and Ecosystem Analyses
  • Iryna Dronova
  • Lu Liang
  • NDVI Linear Mixing Growth Model (NDVI-LMGM)
  • 4.3.3.
  • Hydro-Phenological Analyses of Complex Flooded Landscapes
  • Iryna Dronova
  • Lu Liang
  • 4.4.
  • Multi-Year Phenological Inference
  • Iryna Dronova
  • Lu Liang
  • 4.4.1.
  • Local-Scale: Phenocam Observations
  • Jin Chen
  • Iryna Dronova
  • Lu Liang
  • 4.4.2.
  • Regional Analyses of Greenness Trends
  • Iryna Dronova
  • Lu Liang
  • 4.4.2.1.
  • Basic Trend Analyses
  • Iryna Dronova
  • Lu Liang
  • Yuhan Rao
  • 4.4.2.2.
  • Trajectory-Based Landscape Change Analyses
  • Iryna Dronova
  • Lu Liang
  • 4.4.2.3.
  • Continuous Change Detection and Classification of Land Cover
  • Iryna Dronova
  • Lu Liang
  • 4.4.3.
  • Broad-Scale Phenological Analyses with Multi-Year Seasonal Data
  • Xiaolin Zhu
  • Iryna Dronova
  • Lu Liang
  • 4.4.3.1.
  • Multi-Year Inference with Phenological Curves
  • Iryna Dronova
  • Lu Liang
  • 4.4.3.2.
  • Percent above Threshold Approaches
  • Iryna Dronova
  • Lu Liang
  • 3.2.1.
  • 4.5.
  • Applications and the Importance of Ancillary Factors
  • Iryna Dronova
  • Lu Liang
  • References
  • Iryna Dronova
  • Lu Liang
  • 5.
  • Time Series Analysis of Moderate Resolution Land Surface Temperatures
  • Iryna Dronova
  • Description of NDVI-LMGM
  • Lu Liang
  • 5.1.
  • Introduction
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.2.
  • Data and Methods
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.2.1.
  • Jin Chen
  • MYD11A1 and MOD11A1 Land Surface Temperatures
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.2.2.
  • MODIS Land Cover and Urban Areas
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.2.3.
  • Annual Cycle Parameters
  • Benjamin Bechtel
  • Yuhan Rao
  • Panagiotis Sismanidis
  • 5.3.
  • Results and Discussion
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.3.1.
  • ACP for Central Europe
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.3.2.
  • Xiaolin Zhu
  • Comparison between Collection-5 and Collection-6
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.3.3.
  • Latitudinal Gradients in ACP
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.4.
  • Applications
  • Benjamin Bechtel
  • Helmer
  • 3.2.2.
  • Panagiotis Sismanidis
  • 5.4.1.
  • Climatological SUHI Analysis
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.4.2.
  • Using the ACPs as Disaggregation Kernels for Downscaling LST Image Data
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 5.5.
  • Test Experiment
  • Conclusions
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • References
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • 6.
  • Impervious Surface Estimation by Integrated Use of Landsat and MODIS Time Series in Wuhan, China
  • Benjamin Bechtel
  • Panagiotis Sismanidis
  • Jin Chen
  • 6.1.
  • Introduction
  • Zhang Lei
  • Qihao Weng
  • 6.2.
  • Study Area
  • Zhang Lei
  • Qihao Weng
  • 6.3.
  • Methodology
  • Yuhan Rao
  • Zhang Lei
  • Qihao Weng
  • 6.3.1.
  • Data Preprocessing
  • Zhang Lei
  • Qihao Weng
  • 6.3.2.
  • Reconstruction of Time Series BCI
  • Zhang Lei
  • Qihao Weng
  • Xiaolin Zhu
  • 6.3.3.
  • Similarity of Temporal Features
  • Zhang Lei
  • Qihao Weng
  • 6.3.4.
  • Classification Based on Semi-Supervised SVM
  • Zhang Lei
  • Qihao Weng
  • 6.4.
  • Results and Discussion
  • 3.2.2.1.
  • Zhang Lei
  • Qihao Weng
  • 6.4.1.
  • Annual Dynamics of Impervious Surfaces
  • Zhang Lei
  • Qihao Weng
  • 6.4.2.
  • Classification Accuracy
  • Zhang Lei
  • Qihao Weng
  • Assessment over Spatial and Temporal Contrasting Regions
  • 6.5.
  • Conclusions
  • Zhang Lei
  • Qihao Weng
  • Acknowledgments
  • Zhang Lei
  • Qihao Weng
  • References
  • Zhang Lei
  • Qihao Weng
  • Jin Chen
  • 7.
  • Mapping Land Cover Trajectories Using Monthly MODIS Time Series from 2001 to 2010
  • Zhang Lei
  • Qihao Weng
  • 7.1.
  • Introduction
  • Shanshan Cai
  • Desheng Liu
  • 7.2.
  • Study Area and Data
  • Yuhan Rao
  • Shanshan Cai
  • Desheng Liu
  • 7.2.1.
  • Study Area
  • Shanshan Cai
  • Desheng Liu
  • 7.2.2.
  • Image Data
  • Shanshan Cai
  • Desheng Liu
  • Xiaolin Zhu
  • 7.2.3.
  • Reference Data
  • Shanshan Cai
  • Desheng Liu
  • 7.3.
  • Methods
  • Shanshan Cai
  • Desheng Liu
  • 7.3.1.
  • Algorithm Overview
  • Jin Chen
  • 3.2.2.2.
  • Shanshan Cai
  • Desheng Liu
  • 7.3.2.
  • Detecting Change Dates
  • Shanshan Cai
  • Desheng Liu
  • 7.3.3.
  • Generating Adaptive Time Series
  • Shanshan Cai
  • Desheng Liu
  • Assessment for Long Term Prediction
  • 7.3.4.
  • Modified SVM Classification
  • Shanshan Cai
  • Desheng Liu
  • 7.3.5.
  • Integrated Training and Classification
  • Shanshan Cai
  • Desheng Liu
  • 7.3.6.
  • Trajectory Reconstruction
  • Jin Chen
  • Shanshan Cai
  • Desheng Liu
  • 7.3.7.
  • Comparison of Adaptive Time Series with Full Length Time Series
  • Shanshan Cai
  • Desheng Liu --
  • Yuhan Rao
  • Xiaolin Zhu
  • 3.3.
  • Flexible Spatiotemporal Data Fusion Method (FSDAF)
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • Desheng Liu
  • 3.3.1.
  • Description of FSDAF
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • 3.3.2.
  • Test Experiment
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • 3.1.
  • 3.3.2.1.
  • Assessment of Simulated Results
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • 3.3.2.2.
  • Assessment of Fusing Real Satellite Images
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • Introduction
  • 3.4.
  • Conclusions and Discussion
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • Acknowledgments
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • References
  • Jin Chen
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • 4.
  • Phenological Inference from Times Series Remote Sensing Data
  • Jin Chen
  • Yuhan Rao
  • Xiaolin Zhu
  • 4.1.
  • Introduction
  • Yuhan Rao
  • Iryna Dronova
  • Lu Liang
  • 4.2.
  • Single-Season Phenological Analyses
  • Iryna Dronova
  • Lu Liang
  • 4.2.1.
  • Spectral Indicators of Phenology
  • Iryna Dronova
  • Lu Liang
  • Xiaolin Zhu
  • 4.2.2.
  • Basic Seasonal Phenological Trajectory
  • Iryna Dronova
  • Lu Liang
  • 4.2.3.
  • Phenological Variation Represented by Seasonal Trajectories
  • Iryna Dronova
  • Lu Liang
  • 4.3.
  • Common Applications of Single-Year Phenology
  • Desheng Liu
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • References
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • 7.4.1.
  • 9.
  • General Workflow for Mapping Forest Disturbance History Using Pixel Based Time Series Analysis
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • 9.1.
  • Introduction
  • Feng Zhao
  • Trajectory Mapping Results
  • Chengquan Huang
  • 9.2.
  • Overview of the NAFD-NEX Processing Flow
  • Feng Zhao
  • Chengquan Huang
  • 9.3.
  • Image Selection and Preprocessing
  • Chengquan Huang
  • Feng Zhao
  • 9.3.1.
  • Shanshan Cai
  • Image Selection
  • Feng Zhao
  • Chengquan Huang
  • 9.3.2.
  • Image Preprocessing
  • Feng Zhao
  • Chengquan Huang
  • 9.3.3.
  • Image Compositing
  • Feng Zhao
  • Desheng Liu
  • Chengquan Huang
  • 9.4.
  • VCT Disturbance Analysis
  • Feng Zhao
  • Chengquan Huang
  • 9.4.1.
  • Need for Annual Landsat Time Series
  • Feng Zhao
  • Chengquan Huang
  • 9.4.2.
  • 7.4.2.
  • Western US Sparse Forests Adjustment
  • Feng Zhao
  • Chengquan Huang
  • 9.5.
  • Post Processing
  • Feng Zhao
  • Chengquan Huang
  • 9.5.1.
  • Quality Assessment
  • Feng Zhao
  • Accuracy Assessment of Adaptive Classification Results
  • Chengquan Huang
  • 9.5.2.
  • Adjustment of Minimum Mapping Unit (MMU) to Address Erroneous Forest Disturbance Rates in Low Forest Cover Counties
  • Feng Zhao
  • Chengquan Huang
  • 9.5.3.
  • Map Re-Projection
  • Feng Zhao
  • Chengquan Huang
  • 9.5.4.
  • Shanshan Cai
  • Annual Disturbance Maps Mosaic
  • Feng Zhao
  • Chengquan Huang
  • 9.6.
  • NAFD-NEX Product Generation
  • Feng Zhao
  • Chengquan Huang
  • 9.6.1.
  • NAFD-NEX Product at Oak Ridge National Laboratory (ORNL)
  • Feng Zhao
  • Desheng Liu
  • Chengquan Huang
  • 9.6.2.
  • Validation
  • Feng Zhao
  • Chengquan Huang
  • 9.7.
  • Summary
  • Feng Zhao
  • Chengquan Huang
  • References
  • 7.4.3.
  • Feng Zhao
  • Chengquan Huang
  • 10.
  • Monitoring Annual Vegetated Land Loss to Urbanization with Landsat Archive: A Case Study in Shanghai, China
  • Feng Zhao
  • Chengquan Huang
  • 10.1.
  • Introduction
  • Qingling Zhang
  • Bhartendu Pandey
  • Contents note continued:
  • Accuracy Assessment of Trajectory Mapping Results
  • 10.2.
  • Methodology
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.2.1.
  • Data and Preprocessing
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.2.2.
  • Constructing Time Series of Annual Cloud/Shadow Free Landsat NDVI Composites
  • Shanshan Cai
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.2.3.
  • Properties of the NDVI Mosaics
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.2.4.
  • Simulating NDVI Trajectory Models
  • Qingling Zhang
  • Bhartendu Pandey
  • Desheng Liu
  • 10.2.5.
  • Pinpointing Changes
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.2.6.
  • Post Processing
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.2.7.
  • Accuracy Assessment and Evaluation
  • 7.4.4.
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.3.
  • Results
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.3.1.
  • Results of Change Detection
  • Qingling Zhang
  • Bhartendu Pandey
  • Comparison of Adaptive Time Series with Full Length Time Series
  • 10.3.2.
  • Change Detection Accuracy
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.3.3.
  • Comparison with Official Statistics Data
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.4.
  • Discussions
  • Shanshan Cai
  • Qingling Zhang
  • Bhartendu Pandey
  • 10.5.
  • Conclusions
  • Bhartendu Pandey
  • Qingling Zhang
  • 10.6.
  • Acknowledgment
  • Qingling Zhang
  • Bhartendu Pandey
  • Desheng Liu
  • References
  • Qingling Zhang
  • Bhartendu Pandey
  • 7.5.
  • Discussion
  • Shanshan Cai
  • 7.3.8.
  • Desheng Liu
  • 7.6.
  • Conclusions
  • Shanshan Cai
  • Desheng Liu
  • References
  • Shanshan Cai
  • Desheng Liu
  • 8.
  • Creating a Robust Reference Dataset for Large Area Time Series Disturbance Classification
  • Accuracy Assessment
  • Shanshan Cai
  • Desheng Liu
  • 8.1.
  • Introduction
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • 8.2.
  • Shanshan Cai
  • Study Area
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • 8.3.
  • Methods
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Desheng Liu
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • 8.3.1.
  • Quality Control and Quality Assurance
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • 7.4.
  • 8.4.
  • Case Study
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • 8.4.1.
  • Quality Control and Quality Assurance
  • Mariela Soto-Berelov
  • Results
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • 8.4.2.
  • Mapping Disturbance
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Shanshan Cai
  • Trung H. Nguyen
  • 8.5.
  • Discussion and Conclusion
  • Mariela Soto-Berelov
  • Andrew Haywood
  • Simon Jones
  • Samuel Hislop
  • Trung H. Nguyen
  • Acknowledgments
  • Mariela Soto-Berelov
Dimensions
unknown
Extent
1 online resource.
Form of item
online
Isbn
9781351680578
Isbn Type
(electronic bk.)
Media category
computer
Media MARC source
rdamedia
Media type code
c
Reproduction note
Electronic reproduction.
Specific material designation
remote
System control number
(NhCcYBP)EBC5352267

Library Locations

  • Albert D. Cohen Management LibraryBorrow it
    181 Freedman Crescent, Winnipeg, MB, R3T 5V4, CA
    49.807878 -97.129961
  • Architecture/Fine Arts LibraryBorrow it
    84 Curry Place, Winnipeg, MB, CA
    49.807716 -97.136226
  • Archives and Special CollectionsBorrow it
    25 Chancellors Circle (Elizabeth Dafoe Library), Room 330, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Bibliothèque Alfred-Monnin (Université de Saint-Boniface)Borrow it
    200, avenue de la Cathédrale, Local 2110, Winnipeg, MB, R2H 0H7, CA
    49.888861 -97.119735
  • Bill Larson Library (Grace Hospital)Borrow it
    300 Booth Drive, G-227, Winnipeg, MB, R3J 3M7, CA
    49.882400 -97.276436
  • Carolyn Sifton - Helene Fuld Library (St. Boniface General Hospital)Borrow it
    409 Tache Avenue, Winnipeg, MB, R2H 2A6, CA
    49.883388 -97.126050
  • Concordia Hospital LibraryBorrow it
    1095 Concordia Avenue, Winnipeg, MB, R2K 3S8, CA
    49.913252 -97.064683
  • Donald W. Craik Engineering LibraryBorrow it
    75B Chancellors Circle (Engineering Building E3), Room 361, Winnipeg, MB, R3T 2N2, CA
    49.809053 -97.133292
  • E.K. Williams Law LibraryBorrow it
    224 Dysart Road, Winnipeg, MB, R3T 5V4, CA
    49.811829 -97.131017
  • Eckhardt-Gramatté Music LibraryBorrow it
    136 Dafoe Road (Taché Arts Complex), Room 257, Winnipeg, MB, R3T 2N2, CA
    49.807964 -97.132222
  • Elizabeth Dafoe LibraryBorrow it
    25 Chancellors Circle, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Fr. H. Drake Library (St. Paul's College)Borrow it
    70 Dysart Road, Winnipeg, MB, R3T 2M6, CA
    49.810605 -97.138184
  • J.W. Crane Memorial Library (Deer Lodge Centre)Borrow it
    2109 Portage Avenue, Winnipeg, MB, R3J 0L3, CA
    49.878000 -97.235520
  • Libraries Annex (not open to the public; please see web page for details)Borrow it
    25 Chancellors Circle (in the Elizabeth Dafoe Library), Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Neil John Maclean Health Sciences LibraryBorrow it
    727 McDermot Avenue (Brodie Centre), 200 Level, Winnipeg, MB, R3E 3P5, CA
    49.903563 -97.160554
  • Sciences and Technology LibraryBorrow it
    186 Dysart Road, Winnipeg, MB, R3T 2M8, CA
    49.811526 -97.133257
  • Seven Oaks General Hospital LibraryBorrow it
    2300 McPhillips Street, Winnipeg, MB, R2V 3M3, CA
    49.955177 -97.148865
  • Sister St. Odilon Library (Misericordia Health Centre)Borrow it
    99 Cornish Avenue, Winnipeg, MB, R3C 1A2, CA
    49.879592 -97.160425
  • St. John's College LibraryBorrow it
    92 Dysart Road, Winnipeg, MB, R3T 2M5, CA
    49.811242 -97.137156
  • Victoria General Hospital LibraryBorrow it
    2340 Pembina Highway, Winnipeg, MB, R3T 2E8, CA
    49.806755 -97.152739
  • William R Newman Library (Agriculture)Borrow it
    66 Dafoe Road, Winnipeg, MB, R3T 2R3, CA
    49.806936 -97.135525
Processing Feedback ...