The Resource Road vehicle dynamics : fundamentals and modeling, Georg Rill

Road vehicle dynamics : fundamentals and modeling, Georg Rill

Label
Road vehicle dynamics : fundamentals and modeling
Title
Road vehicle dynamics
Title remainder
fundamentals and modeling
Statement of responsibility
Georg Rill
Creator
Subject
Language
eng
Member of
Cataloging source
DLC
http://library.link/vocab/creatorName
Rill, Georg
Dewey number
629.2
Illustrations
illustrations
Index
index present
LC call number
TL243
LC item number
.R55 2012
Literary form
non fiction
Nature of contents
bibliography
Series statement
Ground vehicle engineering series
http://library.link/vocab/subjectName
Motor vehicles
Label
Road vehicle dynamics : fundamentals and modeling, Georg Rill
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • Terminology
  • Tire Deflection
  • 3.2.4.
  • Static Contact Point
  • 3.2.5.
  • Length of Contact Patch
  • 3.2.6.
  • Contact Point Velocity
  • 3.2.7.
  • Dynamic Rolling Radius
  • 3.3.
  • 1.2.1.
  • Steady-State Forces and Torques
  • 3.3.1.
  • Wheel Load
  • 3.3.2.
  • Tipping Torque
  • 3.3.3.
  • Rolling Resistance
  • 3.3.4.
  • Longitudinal Force and Longitudinal Slip
  • 3.3.5.
  • Vehicle Dynamics
  • Lateral Slip, Lateral Force, and Self-Aligning Torque
  • 3.4.
  • Combined Forces
  • 3.4.1.
  • Combined Slip
  • 3.4.2.
  • Suitable Approximation
  • 3.4.3.
  • Some Results
  • 3.5.
  • 1.2.2.
  • Bore Torque
  • 3.5.1.
  • Modeling Aspects
  • 3.5.2.
  • Maximum Torque
  • 3.5.3.
  • Simple Approach
  • 3.5.4.
  • Generalized Slip
  • 3.6.
  • Driver
  • Different Influences on Tire Forces and Torques
  • 3.6.1.
  • Wheel Load
  • 3.6.2.
  • Friction
  • 3.6.3.
  • Camber
  • 3.7.
  • First-Order Tire Dynamics
  • 3.7.1.
  • 1.2.3.
  • Simple Dynamic Extension
  • 3.7.2.
  • Enhanced Force Dynamics
  • 3.7.3.
  • Enhanced Torque Dynamics
  • 3.7.3.1.
  • Self-Aligning Torque
  • 3.7.3.2.
  • Bore Torque
  • 3.7.3.3.
  • Vehicle
  • Parking Torque
  • Exercises
  • 4.1.
  • Components and Concepts
  • 4.1.1.
  • Conventional Drive Train
  • 4.1.2.
  • Hybrid Drive
  • 4.1.3.
  • Electric Drive
  • 1.2.4.
  • 4.2.
  • Wheel and Tire
  • 4.2.1.
  • Wheel Dynamics
  • 4.2.2.
  • Eigen-Dynamics
  • 4.2.2.1.
  • Steady-State Tire Forces
  • 4.2.2.2.
  • Dynamic Tire Forces
  • Load
  • 4.2.3.
  • Simple Vehicle Wheel Tire Model
  • 4.2.3.1.
  • Equations of Motion
  • 4.2.3.2.
  • Driving Torque
  • 4.2.3.3.
  • Braking Torque
  • 4.2.3.4.
  • Simulation Results
  • 1.2.5.
  • 4.3.
  • Differentials
  • 4.3.1.
  • Classic Design
  • 4.3.2.
  • Active Differentials
  • 4.4.
  • Generic Drive Train
  • 4.5.
  • Transmission
  • Machine generated contents note:
  • Environment
  • 4.6.
  • Clutch
  • 4.7.
  • Power Sources
  • 4.7.1.
  • Combustion Engine
  • 4.7.2.
  • Hybrid Drive
  • Exercises
  • 5.1.
  • 1.3.
  • Purpose and Components
  • 5.2.
  • Some Examples
  • 5.2.1.
  • Multipurpose Systems
  • 5.2.2.
  • Specific Systems
  • 5.2.3.
  • Steering Geometry
  • 5.3.
  • Definitions
  • Steering Systems
  • 5.3.1.
  • Components and Requirements
  • 5.3.2.
  • Rack-and-Pinion Steering
  • 5.3.3.
  • Lever Arm Steering System
  • 5.3.4.
  • Toe Bar Steering System
  • 5.3.5.
  • 1.3.1.
  • Bus Steering System
  • 5.3.6.
  • Dynamics of a Rack-and-Pinion. Steering System
  • 5.3.6.1.
  • Equation of Motion
  • 5.3.6.2.
  • Steering Forces and Torques
  • 5.3.6.3.
  • Parking Effort
  • 5.4.
  • Coordinate Systems
  • Kinematics of a Double Wishbone Suspension
  • 5.4.1.
  • Modeling Aspects
  • 5.1.2.
  • Position and Orientation
  • 5.4.3.
  • Constraint Equations
  • 5.4.3.1.
  • Control Arms and Wheel Body
  • 5.4.3.2.
  • 1.3.2.
  • Steering Motion
  • 5.4.4.
  • Velocities
  • 5.4.5.
  • Acceleration
  • 5.4.6.
  • Kinematic Analysis
  • Exercises
  • 6.1.
  • Standard Force Elements
  • Design Position of Wheel Center
  • 6.1.1.
  • Springs
  • 6.1.2.
  • Anti-Roll Bar
  • 6.1.3.
  • Damper
  • 6.1.4.
  • Point-to-Point Force Elements
  • 6.1.4.1.
  • Generalized Forces
  • 1.3.3.
  • 6.1.4.2.
  • Example
  • 6.1.5.
  • Rubber Elements
  • 6.2.
  • Dynamic Force Elements
  • 6.2.1.
  • Testing and Evaluating Procedures
  • 6.2.1.1.
  • Simple Approach
  • Toe-In, Toe-Out
  • 6.2.1.2.
  • Sweep Sine Excitation
  • 6.2.2.
  • Spring Damper in Series
  • 6.2.2.1.
  • Modeling Aspects
  • 6.2.2.2.
  • Linear Characteristics
  • 6.2.2.3.
  • Nonlinear Damper Topmount Combination
  • 1.3.4.
  • 6.2.3.
  • General Dynamic Force Model
  • 6.2.4.
  • Hydro-Mount
  • Exercises
  • 7.1.
  • Goals
  • 7.2.
  • From Complex to Simple Models
  • 7.3.
  • 1.1.
  • Wheel Camber
  • Basic Tuning
  • 7.3.1.
  • Natural Frequency and Damping Ratio
  • 7.3.2.
  • Minimum Spring Rate
  • 7.3.3.
  • Example
  • 7.3.4.
  • Undamped Eigenfrequencies
  • 7.3.5.
  • 1.3.5.
  • Influence of Damping
  • 7.4.
  • Optimal Damping
  • 7.4.1.
  • Disturbance Reaction Problem
  • 7.4.2.
  • Optimal Safety
  • 7.4.3.
  • Optimal Comfort
  • 7.4.4.
  • Design Position of the Wheel Rotation Axis
  • Example
  • 7.5.
  • Practical Aspects
  • 7.5.1.
  • General Remarks
  • 7.5.2.
  • Quarter Car Model on Rough Road
  • 7.6.
  • Nonlinear Suspension Forces
  • 7.6.1.
  • 1.3.6.
  • Progressive Spring
  • 7.6.2.
  • Nonlinear Spring and Nonlinear Damper
  • 7.6.3.
  • Some Results
  • 7.7.
  • Sky Hook Damper
  • 7.7.1.
  • Modeling Aspects
  • 7.7.2.
  • Wheel Aligning Point
  • Eigenfrequencies and Damping Ratios
  • 7.7.3.
  • Technical Realization
  • 7.7.4.
  • Simulation Results
  • Exercises
  • 8.1.
  • Dynamic Wheel Loads
  • 8.1.1.
  • Simple Vehicle Model
  • 1.4.
  • 8.1.2.
  • Influence of Grade
  • 8.1.3.
  • Aerodynamic Forces
  • 8.2.
  • Maximum Acceleration
  • 8.2.1.
  • Tilting Limits
  • 8.2.2.
  • Friction Limits
  • Multibody Dynamics Tailored to Ground Vehicles
  • 8.3.
  • Driving and Braking
  • 8.3.1.
  • Single Axle Drive
  • 8.3.2.
  • Braking at Single Axle
  • 8.3.3.
  • Braking Stability
  • 8.3.4.
  • Optimal Distribution of Drive and Brake Forces
  • 1.4.1.
  • 8.3.5.
  • Different Distributions of Brake Forces
  • 8.3.6.
  • Braking in a Turn
  • 8.3.7.
  • Braking on μ-Split
  • 8.3.8.
  • Anti-Lock System
  • 8.3.8.1.
  • Basic Principle
  • Modeling Aspects
  • 8.3.8.2.
  • Simple Model
  • 8.4.
  • Drive and Brake Pitch
  • 8.1.1.
  • Enhanced Planar Vehicle Model
  • 8.4.2.
  • Equations of Motion
  • 8.4.3.
  • Equilibrium
  • 1.4.2.
  • 8.4.4.
  • Driving and Braking
  • 8.4.5.
  • Drive Pitch
  • 8.4.6.
  • Break Pitch
  • 8.4.7.
  • Brake Pitch Pole
  • Exercises
  • 9.1.
  • Units and Quantities
  • Kinematics
  • Kinematic Approach
  • 9.1.1.
  • Kinematic Tire Model
  • 9.1.2.
  • Ackermann Geometry
  • 9.1.3.
  • Space Requirement
  • 9.1.4.
  • Vehicle Model with Trailer
  • 9.1.4.1.
  • 1.4.3.
  • Kinematics
  • 9.1.4.2.
  • Vehicle Motion
  • 9.1.4.3.
  • Entering a Curve
  • 9.1.4.4.
  • Trailer Motions
  • 9.1.4.5.
  • Course Calculations
  • 9.2.
  • Equations of Motion
  • Steady-State Cornering
  • 9.2.1.
  • Cornering Resistance
  • 9.2.1.1.
  • Two-Axled Vehicle
  • 9.2.1.2.
  • Four-Axled Vehicle
  • 9.2.2.
  • Overturning Limit
  • 9.2.2.1.
  • 1.5.
  • Static Stability Factor
  • 9.2.2.2.
  • Enhanced Rollover Model
  • 9.2.3.
  • Roll Support and Camber Compensation
  • 9.2.4.
  • Roll Center and Roll Axis
  • 9.2.5.
  • Wheel Load Transfer
  • 9.3.
  • Quarter Car Model
  • Simple Handling Model
  • 9.3.1.
  • Modeling Concept
  • 9.3.2.
  • Kinematics
  • 9.3.3.
  • Tire Forces
  • 9.3.4.
  • Lateral Slips
  • 9.3.5.
  • 1.5.1.
  • Equations of Motion
  • 9.3.6.
  • Stability
  • 9.3.6.1.
  • Eigenvalues
  • 9.3.6.2.
  • Low-Speed Approximation
  • 9.3.6.3.
  • High-Speed Approximation
  • 9.3.6.4.
  • Modeling Details
  • Critical Speed
  • 9.3.6.5.
  • Example
  • 9.3.7.
  • Steady-State Solution
  • 9.3.7.1.
  • Steering Tendency
  • 9.3.7.2.
  • Side Slip Angle
  • 9.3.7.3.
  • 1.5.2.
  • Curve Radius
  • 9.3.7.4.
  • Lateral Slips
  • 9.3.8.
  • Influence of Wheel Load on Cornering Stiffness
  • 9.4.
  • Mechatronic Systems
  • 9.4.1.
  • Electronic Stability Control (ESC)
  • 9.4.2.
  • Kinematics
  • Steer-by-Wire
  • Exercises
  • 10.1.
  • Three-Dimensional Vehicle Model
  • 10.1.1.
  • Model Structure
  • 10.1.2.
  • Position and Orientation
  • 10.1.3.
  • Velocities
  • 1.5.3.
  • 10.1.4.
  • Accelerations
  • 10.1.5.
  • Applied and Generalized Forces and Torques
  • 10.1.6.
  • Equations of Motion
  • 10.2.
  • Driver Model
  • 10.2.1.
  • Standard Model
  • 1.1.1.
  • Applied Forces and Torques
  • 10.2.2.
  • Enhanced Model
  • 10.2.3.
  • Simple Approach
  • 10.3.
  • Standard Driving Maneuvers
  • 10.3.1.
  • Steady-State Cornering
  • 10.3.2.
  • Step Steer Input
  • 1.5.4.
  • 10.3.3.
  • Driving Straight Ahead
  • 10.4.
  • Coach with Different Loading Conditions
  • 10.4.1.
  • Data
  • 10.4.2.
  • Roll Steering
  • 10.4.3.
  • Steady-State Cornering
  • Equations of Motion
  • 10.1.4.
  • Step Steer Input
  • 10.5.
  • Different Rear Axle Concepts for a Passenger Car
  • Exercises
  • 1.5.5.
  • Simulation
  • Exercises
  • 2.1.
  • Modeling Aspects
  • 2.2.
  • Deterministic Profiles
  • SI System
  • 2.2.1.
  • Bumps and Potholes
  • 2.2.2.
  • Sine Waves
  • 2.3.
  • Random Profiles
  • 2.3.1.
  • Statistical Properties
  • 2.3.2.
  • Classification of Random Road Profiles
  • 1.1.2.
  • 2.3.3.
  • Sinusoidal Approximation
  • 2.3.4.
  • Example
  • 2.3.5.
  • Shaping Filter
  • 2.3.6.
  • Two-Dimensional Model
  • Exercises
  • 3.1.
  • Tire Codes
  • Introduction
  • 3.1.1.
  • Tire Development
  • 3.1.2.
  • Tire Composites
  • 3.1.3.
  • Tire Forces and Torques
  • 3.1.4.
  • Measuring Tire Forces and Torques
  • 3.1.5.
  • 1.2.
  • Modeling Aspects
  • 3.1.6.
  • Typical Tire Characteristics
  • 3.2.
  • Contact Geometry
  • 3.2.1.
  • Basic Approach
  • 3.2.2.
  • Local Track Plane
  • 3.2.3.
Dimensions
25 cm.
Extent
xxix, 331 p.
Isbn
9781439838983
Isbn Type
(hardcover : alk. paper)
Lccn
2011034810
Other physical details
ill.
System control number
  • (CaMWU)u2461752-01umb_inst
  • 2466454
  • (Sirsi) i9781439838983
  • (OCoLC)495781648
Label
Road vehicle dynamics : fundamentals and modeling, Georg Rill
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • Terminology
  • Tire Deflection
  • 3.2.4.
  • Static Contact Point
  • 3.2.5.
  • Length of Contact Patch
  • 3.2.6.
  • Contact Point Velocity
  • 3.2.7.
  • Dynamic Rolling Radius
  • 3.3.
  • 1.2.1.
  • Steady-State Forces and Torques
  • 3.3.1.
  • Wheel Load
  • 3.3.2.
  • Tipping Torque
  • 3.3.3.
  • Rolling Resistance
  • 3.3.4.
  • Longitudinal Force and Longitudinal Slip
  • 3.3.5.
  • Vehicle Dynamics
  • Lateral Slip, Lateral Force, and Self-Aligning Torque
  • 3.4.
  • Combined Forces
  • 3.4.1.
  • Combined Slip
  • 3.4.2.
  • Suitable Approximation
  • 3.4.3.
  • Some Results
  • 3.5.
  • 1.2.2.
  • Bore Torque
  • 3.5.1.
  • Modeling Aspects
  • 3.5.2.
  • Maximum Torque
  • 3.5.3.
  • Simple Approach
  • 3.5.4.
  • Generalized Slip
  • 3.6.
  • Driver
  • Different Influences on Tire Forces and Torques
  • 3.6.1.
  • Wheel Load
  • 3.6.2.
  • Friction
  • 3.6.3.
  • Camber
  • 3.7.
  • First-Order Tire Dynamics
  • 3.7.1.
  • 1.2.3.
  • Simple Dynamic Extension
  • 3.7.2.
  • Enhanced Force Dynamics
  • 3.7.3.
  • Enhanced Torque Dynamics
  • 3.7.3.1.
  • Self-Aligning Torque
  • 3.7.3.2.
  • Bore Torque
  • 3.7.3.3.
  • Vehicle
  • Parking Torque
  • Exercises
  • 4.1.
  • Components and Concepts
  • 4.1.1.
  • Conventional Drive Train
  • 4.1.2.
  • Hybrid Drive
  • 4.1.3.
  • Electric Drive
  • 1.2.4.
  • 4.2.
  • Wheel and Tire
  • 4.2.1.
  • Wheel Dynamics
  • 4.2.2.
  • Eigen-Dynamics
  • 4.2.2.1.
  • Steady-State Tire Forces
  • 4.2.2.2.
  • Dynamic Tire Forces
  • Load
  • 4.2.3.
  • Simple Vehicle Wheel Tire Model
  • 4.2.3.1.
  • Equations of Motion
  • 4.2.3.2.
  • Driving Torque
  • 4.2.3.3.
  • Braking Torque
  • 4.2.3.4.
  • Simulation Results
  • 1.2.5.
  • 4.3.
  • Differentials
  • 4.3.1.
  • Classic Design
  • 4.3.2.
  • Active Differentials
  • 4.4.
  • Generic Drive Train
  • 4.5.
  • Transmission
  • Machine generated contents note:
  • Environment
  • 4.6.
  • Clutch
  • 4.7.
  • Power Sources
  • 4.7.1.
  • Combustion Engine
  • 4.7.2.
  • Hybrid Drive
  • Exercises
  • 5.1.
  • 1.3.
  • Purpose and Components
  • 5.2.
  • Some Examples
  • 5.2.1.
  • Multipurpose Systems
  • 5.2.2.
  • Specific Systems
  • 5.2.3.
  • Steering Geometry
  • 5.3.
  • Definitions
  • Steering Systems
  • 5.3.1.
  • Components and Requirements
  • 5.3.2.
  • Rack-and-Pinion Steering
  • 5.3.3.
  • Lever Arm Steering System
  • 5.3.4.
  • Toe Bar Steering System
  • 5.3.5.
  • 1.3.1.
  • Bus Steering System
  • 5.3.6.
  • Dynamics of a Rack-and-Pinion. Steering System
  • 5.3.6.1.
  • Equation of Motion
  • 5.3.6.2.
  • Steering Forces and Torques
  • 5.3.6.3.
  • Parking Effort
  • 5.4.
  • Coordinate Systems
  • Kinematics of a Double Wishbone Suspension
  • 5.4.1.
  • Modeling Aspects
  • 5.1.2.
  • Position and Orientation
  • 5.4.3.
  • Constraint Equations
  • 5.4.3.1.
  • Control Arms and Wheel Body
  • 5.4.3.2.
  • 1.3.2.
  • Steering Motion
  • 5.4.4.
  • Velocities
  • 5.4.5.
  • Acceleration
  • 5.4.6.
  • Kinematic Analysis
  • Exercises
  • 6.1.
  • Standard Force Elements
  • Design Position of Wheel Center
  • 6.1.1.
  • Springs
  • 6.1.2.
  • Anti-Roll Bar
  • 6.1.3.
  • Damper
  • 6.1.4.
  • Point-to-Point Force Elements
  • 6.1.4.1.
  • Generalized Forces
  • 1.3.3.
  • 6.1.4.2.
  • Example
  • 6.1.5.
  • Rubber Elements
  • 6.2.
  • Dynamic Force Elements
  • 6.2.1.
  • Testing and Evaluating Procedures
  • 6.2.1.1.
  • Simple Approach
  • Toe-In, Toe-Out
  • 6.2.1.2.
  • Sweep Sine Excitation
  • 6.2.2.
  • Spring Damper in Series
  • 6.2.2.1.
  • Modeling Aspects
  • 6.2.2.2.
  • Linear Characteristics
  • 6.2.2.3.
  • Nonlinear Damper Topmount Combination
  • 1.3.4.
  • 6.2.3.
  • General Dynamic Force Model
  • 6.2.4.
  • Hydro-Mount
  • Exercises
  • 7.1.
  • Goals
  • 7.2.
  • From Complex to Simple Models
  • 7.3.
  • 1.1.
  • Wheel Camber
  • Basic Tuning
  • 7.3.1.
  • Natural Frequency and Damping Ratio
  • 7.3.2.
  • Minimum Spring Rate
  • 7.3.3.
  • Example
  • 7.3.4.
  • Undamped Eigenfrequencies
  • 7.3.5.
  • 1.3.5.
  • Influence of Damping
  • 7.4.
  • Optimal Damping
  • 7.4.1.
  • Disturbance Reaction Problem
  • 7.4.2.
  • Optimal Safety
  • 7.4.3.
  • Optimal Comfort
  • 7.4.4.
  • Design Position of the Wheel Rotation Axis
  • Example
  • 7.5.
  • Practical Aspects
  • 7.5.1.
  • General Remarks
  • 7.5.2.
  • Quarter Car Model on Rough Road
  • 7.6.
  • Nonlinear Suspension Forces
  • 7.6.1.
  • 1.3.6.
  • Progressive Spring
  • 7.6.2.
  • Nonlinear Spring and Nonlinear Damper
  • 7.6.3.
  • Some Results
  • 7.7.
  • Sky Hook Damper
  • 7.7.1.
  • Modeling Aspects
  • 7.7.2.
  • Wheel Aligning Point
  • Eigenfrequencies and Damping Ratios
  • 7.7.3.
  • Technical Realization
  • 7.7.4.
  • Simulation Results
  • Exercises
  • 8.1.
  • Dynamic Wheel Loads
  • 8.1.1.
  • Simple Vehicle Model
  • 1.4.
  • 8.1.2.
  • Influence of Grade
  • 8.1.3.
  • Aerodynamic Forces
  • 8.2.
  • Maximum Acceleration
  • 8.2.1.
  • Tilting Limits
  • 8.2.2.
  • Friction Limits
  • Multibody Dynamics Tailored to Ground Vehicles
  • 8.3.
  • Driving and Braking
  • 8.3.1.
  • Single Axle Drive
  • 8.3.2.
  • Braking at Single Axle
  • 8.3.3.
  • Braking Stability
  • 8.3.4.
  • Optimal Distribution of Drive and Brake Forces
  • 1.4.1.
  • 8.3.5.
  • Different Distributions of Brake Forces
  • 8.3.6.
  • Braking in a Turn
  • 8.3.7.
  • Braking on μ-Split
  • 8.3.8.
  • Anti-Lock System
  • 8.3.8.1.
  • Basic Principle
  • Modeling Aspects
  • 8.3.8.2.
  • Simple Model
  • 8.4.
  • Drive and Brake Pitch
  • 8.1.1.
  • Enhanced Planar Vehicle Model
  • 8.4.2.
  • Equations of Motion
  • 8.4.3.
  • Equilibrium
  • 1.4.2.
  • 8.4.4.
  • Driving and Braking
  • 8.4.5.
  • Drive Pitch
  • 8.4.6.
  • Break Pitch
  • 8.4.7.
  • Brake Pitch Pole
  • Exercises
  • 9.1.
  • Units and Quantities
  • Kinematics
  • Kinematic Approach
  • 9.1.1.
  • Kinematic Tire Model
  • 9.1.2.
  • Ackermann Geometry
  • 9.1.3.
  • Space Requirement
  • 9.1.4.
  • Vehicle Model with Trailer
  • 9.1.4.1.
  • 1.4.3.
  • Kinematics
  • 9.1.4.2.
  • Vehicle Motion
  • 9.1.4.3.
  • Entering a Curve
  • 9.1.4.4.
  • Trailer Motions
  • 9.1.4.5.
  • Course Calculations
  • 9.2.
  • Equations of Motion
  • Steady-State Cornering
  • 9.2.1.
  • Cornering Resistance
  • 9.2.1.1.
  • Two-Axled Vehicle
  • 9.2.1.2.
  • Four-Axled Vehicle
  • 9.2.2.
  • Overturning Limit
  • 9.2.2.1.
  • 1.5.
  • Static Stability Factor
  • 9.2.2.2.
  • Enhanced Rollover Model
  • 9.2.3.
  • Roll Support and Camber Compensation
  • 9.2.4.
  • Roll Center and Roll Axis
  • 9.2.5.
  • Wheel Load Transfer
  • 9.3.
  • Quarter Car Model
  • Simple Handling Model
  • 9.3.1.
  • Modeling Concept
  • 9.3.2.
  • Kinematics
  • 9.3.3.
  • Tire Forces
  • 9.3.4.
  • Lateral Slips
  • 9.3.5.
  • 1.5.1.
  • Equations of Motion
  • 9.3.6.
  • Stability
  • 9.3.6.1.
  • Eigenvalues
  • 9.3.6.2.
  • Low-Speed Approximation
  • 9.3.6.3.
  • High-Speed Approximation
  • 9.3.6.4.
  • Modeling Details
  • Critical Speed
  • 9.3.6.5.
  • Example
  • 9.3.7.
  • Steady-State Solution
  • 9.3.7.1.
  • Steering Tendency
  • 9.3.7.2.
  • Side Slip Angle
  • 9.3.7.3.
  • 1.5.2.
  • Curve Radius
  • 9.3.7.4.
  • Lateral Slips
  • 9.3.8.
  • Influence of Wheel Load on Cornering Stiffness
  • 9.4.
  • Mechatronic Systems
  • 9.4.1.
  • Electronic Stability Control (ESC)
  • 9.4.2.
  • Kinematics
  • Steer-by-Wire
  • Exercises
  • 10.1.
  • Three-Dimensional Vehicle Model
  • 10.1.1.
  • Model Structure
  • 10.1.2.
  • Position and Orientation
  • 10.1.3.
  • Velocities
  • 1.5.3.
  • 10.1.4.
  • Accelerations
  • 10.1.5.
  • Applied and Generalized Forces and Torques
  • 10.1.6.
  • Equations of Motion
  • 10.2.
  • Driver Model
  • 10.2.1.
  • Standard Model
  • 1.1.1.
  • Applied Forces and Torques
  • 10.2.2.
  • Enhanced Model
  • 10.2.3.
  • Simple Approach
  • 10.3.
  • Standard Driving Maneuvers
  • 10.3.1.
  • Steady-State Cornering
  • 10.3.2.
  • Step Steer Input
  • 1.5.4.
  • 10.3.3.
  • Driving Straight Ahead
  • 10.4.
  • Coach with Different Loading Conditions
  • 10.4.1.
  • Data
  • 10.4.2.
  • Roll Steering
  • 10.4.3.
  • Steady-State Cornering
  • Equations of Motion
  • 10.1.4.
  • Step Steer Input
  • 10.5.
  • Different Rear Axle Concepts for a Passenger Car
  • Exercises
  • 1.5.5.
  • Simulation
  • Exercises
  • 2.1.
  • Modeling Aspects
  • 2.2.
  • Deterministic Profiles
  • SI System
  • 2.2.1.
  • Bumps and Potholes
  • 2.2.2.
  • Sine Waves
  • 2.3.
  • Random Profiles
  • 2.3.1.
  • Statistical Properties
  • 2.3.2.
  • Classification of Random Road Profiles
  • 1.1.2.
  • 2.3.3.
  • Sinusoidal Approximation
  • 2.3.4.
  • Example
  • 2.3.5.
  • Shaping Filter
  • 2.3.6.
  • Two-Dimensional Model
  • Exercises
  • 3.1.
  • Tire Codes
  • Introduction
  • 3.1.1.
  • Tire Development
  • 3.1.2.
  • Tire Composites
  • 3.1.3.
  • Tire Forces and Torques
  • 3.1.4.
  • Measuring Tire Forces and Torques
  • 3.1.5.
  • 1.2.
  • Modeling Aspects
  • 3.1.6.
  • Typical Tire Characteristics
  • 3.2.
  • Contact Geometry
  • 3.2.1.
  • Basic Approach
  • 3.2.2.
  • Local Track Plane
  • 3.2.3.
Dimensions
25 cm.
Extent
xxix, 331 p.
Isbn
9781439838983
Isbn Type
(hardcover : alk. paper)
Lccn
2011034810
Other physical details
ill.
System control number
  • (CaMWU)u2461752-01umb_inst
  • 2466454
  • (Sirsi) i9781439838983
  • (OCoLC)495781648

Library Locations

  • Albert D. Cohen Management LibraryBorrow it
    181 Freedman Crescent, Winnipeg, MB, R3T 5V4, CA
    49.807878 -97.129961
  • Architecture/Fine Arts LibraryBorrow it
    84 Curry Place, Winnipeg, MB, CA
    49.807716 -97.136226
  • Archives and Special CollectionsBorrow it
    25 Chancellors Circle (Elizabeth Dafoe Library), Room 330, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Bibliothèque Alfred-Monnin (Université de Saint-Boniface)Borrow it
    200, avenue de la Cathédrale, Local 2110, Winnipeg, MB, R2H 0H7, CA
    49.888861 -97.119735
  • Bill Larson Library (Grace Hospital)Borrow it
    300 Booth Drive, G-227, Winnipeg, MB, R3J 3M7, CA
    49.882400 -97.276436
  • Carolyn Sifton - Helene Fuld Library (St. Boniface General Hospital)Borrow it
    409 Tache Avenue, Winnipeg, MB, R2H 2A6, CA
    49.883388 -97.126050
  • Concordia Hospital LibraryBorrow it
    1095 Concordia Avenue, Winnipeg, MB, R2K 3S8, CA
    49.913252 -97.064683
  • Donald W. Craik Engineering LibraryBorrow it
    75B Chancellors Circle (Engineering Building E3), Room 361, Winnipeg, MB, R3T 2N2, CA
    49.809053 -97.133292
  • E.K. Williams Law LibraryBorrow it
    224 Dysart Road, Winnipeg, MB, R3T 5V4, CA
    49.811829 -97.131017
  • Eckhardt-Gramatté Music LibraryBorrow it
    136 Dafoe Road (Taché Arts Complex), Room 257, Winnipeg, MB, R3T 2N2, CA
    49.807964 -97.132222
  • Elizabeth Dafoe LibraryBorrow it
    25 Chancellors Circle, Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Fr. H. Drake Library (St. Paul's College)Borrow it
    70 Dysart Road, Winnipeg, MB, R3T 2M6, CA
    49.810605 -97.138184
  • J.W. Crane Memorial Library (Deer Lodge Centre)Borrow it
    2109 Portage Avenue, Winnipeg, MB, R3J 0L3, CA
    49.878000 -97.235520
  • Libraries Annex (not open to the public; please see web page for details)Borrow it
    25 Chancellors Circle (in the Elizabeth Dafoe Library), Winnipeg, MB, R3T 2N2, CA
    49.809961 -97.131878
  • Neil John Maclean Health Sciences LibraryBorrow it
    727 McDermot Avenue (Brodie Centre), 200 Level, Winnipeg, MB, R3E 3P5, CA
    49.903563 -97.160554
  • Sciences and Technology LibraryBorrow it
    186 Dysart Road, Winnipeg, MB, R3T 2M8, CA
    49.811526 -97.133257
  • Seven Oaks General Hospital LibraryBorrow it
    2300 McPhillips Street, Winnipeg, MB, R2V 3M3, CA
    49.955177 -97.148865
  • Sister St. Odilon Library (Misericordia Health Centre)Borrow it
    99 Cornish Avenue, Winnipeg, MB, R3C 1A2, CA
    49.879592 -97.160425
  • St. John's College LibraryBorrow it
    92 Dysart Road, Winnipeg, MB, R3T 2M5, CA
    49.811242 -97.137156
  • Victoria General Hospital LibraryBorrow it
    2340 Pembina Highway, Winnipeg, MB, R3T 2E8, CA
    49.806755 -97.152739
  • William R Newman Library (Agriculture)Borrow it
    66 Dafoe Road, Winnipeg, MB, R3T 2R3, CA
    49.806936 -97.135525
Processing Feedback ...